Joao Leite
Paolo Torroni (Eds.)

Computational Logic
in Multi-Agent Systems

5th International Workshop, CLIMAV
Lisbon, Portugal, September 2004
Revised Selected and Invited Papers

LNAI 3487

@ Springer

Lecture Notes in Artificial Intelligence 3487
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Joao Leite Paolo Torroni (Eds.)

Computational Logic
in Multi-Agent Systems

Sth International Workshop, CLIMA V
Lisbon, Portugal, September 29-30, 2004
Revised Selected and Invited Papers

@ Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Jodo Leite

Universidade Nova de Lisboa, Departamento de Informatica
Faculdade de Ciéncias e Tecnologia

Quinta da Torre, 2829-516 Caparica, Portugal

E-mail: jleite@di.fct.unl.pt

Paolo Torroni

Universita di Bologna

Dipartimento di Elettronica, Informatica e Sistemistica
Viale Risorgimento 2, 40136 Bologna, Italy

E-mail: paolo.torroni @unibo.it

Library of Congress Control Number: 2005929660

CR Subject Classification (1998): 1.2.11, 1.2, C.2.4, F.4

ISSN 0302-9743
ISBN-10 3-540-28060-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28060-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11533092 06/3142 543210

Preface

The notion of agency has recently increased its influence in the research and de-
velopment of computational logic based systems, while at the same time signifi-
cantly gaining from decades of research in computational logic. Computational
logic provides a well-defined, general, and rigorous framework for studying syn-
tax, semantics and procedures, for implementations, environments, tools, and
standards, facilitating the ever important link between specification and verifi-
cation of computational systems.

The purpose of the Computational Logic in Multi-agent Systems (CLIMA)
international workshop series is to discuss techniques, based on computational
logic, for representing, programming, and reasoning about multi-agent systems
in a formal way. Former CLIMA editions were conducted in conjunction with
other major computational logic and AT events such as CL in July 2000, ICLP
in December 2001, FLoC in August 2002, and LPNMR and AI-Math in January
2004.

The fifth edition of CLIMA was held Lisbon, Portugal, in September 29-30,
2004. We, as organizers, and in agreement with the CLIMA Steering Committee,
opted for co-location with the 9th European Conference on Logics in Artificial
Intelligence (JELIA 2004), wishing to promote the CLIMA research topics in
the broader community of logics in Al, a community whose growing interest in
multi-agent issues has been demonstrated by the large number of agent-related
papers submitted to recent editions of JELIA.

The workshop received 35 submissions — a sensible increase from the previous
edition. The submitted papers showed that the logical foundations of multi-agent
systems are felt by a large community to be a very important research topic,
upon which classical Al and agent-related issues are to be addressed.

In line with the high standards of previous CLIMA editions, the review pro-
cess was very selective, the final acceptance rate being below 50%. A Program
Committee of 24 top-level researchers from 11 countries and 12 additional review-
ers selected 16 papers for presentation, authored by 46 researchers worldwide.
The workshop program featured an invited lecture by Alessio Lomuscio (Univer-
sity College London) on Specification and Verification of Multiagent Systems, as
well as a panel discussion organized by Marina de Vos (University of Bath) on
Logic-Based Multi-agent Systems and Industry. Around 50 delegates attended
the two-day event.

This book contains a selection, based on a second round of reviewing, of ex-
tended CLIMA V papers, and it starts with an invited contribution by Bozena
Wozna and Alessio Lomuscio. The papers are divided into four parts: (i) foun-
dations, (ii) architectures, (iii) interaction, and (iv) planning and applications.
There follows a brief overview of the book.

VI Preface

Foundations. In the first paper of this book, A Logic for Knowledge, Correct-
ness, and Real Time, Wozna and Lomuscio present and exemplify TCTLKD,
a logic for knowledge, correctness and real time interpreted on real-time deon-
tic interpreted systems, and extension to continuous time of deontic interpreted
systems.

In Dynamic Logic for Plan Revision in Intelligent Agents, van Riemsdijk
et al. present, with a sound and complete axiomatization, a dynamic logic for
a propositional version of the agent programming language 3APL, tailored to
handle the revision of plans.

Grossi et al. present in their paper Contertual Taxonomies a characterization
of the notion of a taxonomy with respect to specific contexts, addressing prob-
lems stemming from the domain of normative system specifications for modelling
multi-agent systems.

From Logic Programs Updates to Action Description Updates is where Alferes
et al. propose a macro language for the language EVOLP and provide transla-
tions from some fragments of known action description languages into the newly
defined one.

In Dynamic Logic Programming: Various Semantics Are Equal on Acyclic
Programs, Homola investigates multi-dimensional dynamic logic programming,
establishing some classes of programs for which several known semantics coin-
cide.

Architectures. Declarative Agent Control, by Kakas et al., extends the archi-
tecture of agents based upon fixed, one-size-fits-all cycles of operation by pro-
viding a framework for the declarative specification of agent control in terms of
cycle theories, which define possible alternative behaviors of agents.

In Metareasoning for Multi-agent Epistemic Logics, Arkoudas and Bringsjord
present an encoding of a sequent calculus for a multi-agent epistemic logic in
Athena, an interactive theorem proving system for many-sorted first-order logic,
to enable its use as a metalanguage in order to reason about the multi-agent
logic as an object language.

In Graded BDI Models for Agent Architectures, Casali et al. propose a general
model for a graded BDI agent, specifying an architecture able to deal with the
environment uncertainty and with graded mental attitudes.

Interaction. Dastani et al., in their article Inferring Trust, extend Liau’s logic
of Belief, Inform and Trust in two directions: with questions, and with a for-
malization of topics used to infer trust in a proposition from trust in another
proposition.

In Coordination Between Logical Agents, Sakama and Inoue investigate on the
use of answer set programming for belief representation, namely by addressing
the problem of finding logic programs that combine the knowledge from different
agents, while preserving some properties, useful to achieve agent coordination.

In A Computational Model for Conversation Policies for Agent Communica-
tion, Bentahar et al. propose a formal specification of a flexible persuasion proto-

Preface VII

col between autonomous agents, using an approach based on social commitments
and arguments, defined as a combination of a set of conversation policies.

The last paper of this section is Verifying Protocol Conformance for Logic-
Based Communicating Agents, by Baldoni et al., which describes a method for
automatically verifying a form of “structural” conformance by translating AUML
sequence diagrams into regular grammars and, then, interpreting the problem
of conformance as a problem of language inclusion.

Planning and Applications. In the preliminary report An Application of
Global Abduction to an Information Agent Which Modifies a Plan Upon Fail-
ure, Satoh uses a form of abductive logic programming called global abduction
to implement an information agent that deals with the problem of plan modifi-
cation upon action failure.

In Planning Partially for Situated Agents, Mancarella et al. use an abductive
variant of the event calculus to specify planning problems as the base of their
proposal for a framework to design situated agents capable of computing partial
plans.

Han and Barber, in Desire-Space Analysis and Action Selection for Multiple
Dynamic Goals, use macro actions to transform the state space for the agent’s
decision problem into the desire space of the agent. Reasoning in the latter allows
us to approximately weigh the costs and benefits of each of the agent’s goals at
an abstract level.

Hirsch et al. conclude this book with the article Organising Software in Ac-
tive Environments, in which they show how logic-based multi-agent systems are
appropriate to model active environments. They do so by illustrating how the
structuring of the “agent space” can represent both the physical and virtual
structures of an application.

We would like to conclude with a glance at the future of this workshop series.
The sixth CLIMA edition is being organized by Francesca Toni and Paolo Tor-
roni, and will take place at the City University of London, UK, in June 2729,
2005, in conjunction with the EU-funded SOCS Project Dissemination Work-
shop. CLIMA VI will feature a tutorial program and a competition, besides the
usual technical content based on the presentation of papers.

We can not miss this opportunity to thank the authors and delegates, who
made of CLIMA a very interesting and fruitful event; our generous Program
Committee members who did not skimp on time to help us put together a very
rich volume after two rounds of reviewing, discussion, and selection; and our
sponsoring institutions, Universidade Nova de Lisboa, Fundagao para a Ciéncia
e Tecnologia, FBA, and AgentLink III.

April 2005 Joao Leite
Paolo Torroni

Organization

Workshop Chairs

Joao Leite, New University of Lisbon, Portugal
Paolo Torroni, University of Bologna, Italy

Program Committee

José Alferes, New University of Lisbon, Portugal

Gerd Brewka, University of Leipzig, Germany

Jiirgen Dix, Technical University of Clausthal, Germany

Klaus Fisher, DFKI, Germany

Michael Fisher, The University of Liverpool, UK

James Harland, Royal Melbourne Institute of Technology, Australia
Katsumi Inoue, National Institute of Informatics, Japan
Sverker Janson, Swedish Institute of Computer Science, Sweden
Joao Leite, New University of Lisbon, Portugal

Yves Lespérance, York University, Canada

John-Jules Ch. Meyer, Utrecht University, The Netherlands
Leora Morgenstern, IBM, USA

Wojciech Penczek, Polish Academy of Sciences, Poland
Jeremy Pitt, Imperial College London, UK

Enrico Pontelli, New Mexico State University, USA

Fariba Sadri, Imperial College London, UK

Ken Satoh, National Institute of Informatics, Japan

Renate Schmidt, The University of Manchester, UK

Tran Cao Son, New Mexico State University, USA

Francesca Toni, University of Pisa, Italy

Wiebe van der Hoek, The University of Liverpool, UK

Paolo Torroni, University of Bologna, Italy

Makoto Yokoo, Kyushu University, Japan

Cees Witteveen, Delft University of Technology, The Netherlands

Additional Reviewers

Federico Banti Ulle Endriss Magdalena Kacprzak
Thomas Eiter Ullrich Hustadt Olle Olsson

X Organization

Inna Pivkina Kostas Stathis Gregory Wheeler
Chiaki Sakama Maciej Szreter Yingqiang Zhang
Secretariat

Filipa Mira Reis Silvia Marina Costa

Local Organization

Anténio Albuquerque Jamshid Ashtari Miguel Morais
Duarte Alvim Joana Lopes Sérgio Lopes
Eduardo Barros Miguel Mauricio

Steering Committee

Jiirgen Dix, Technical University of Clausthal, Germany
Joao Leite, New University of Lisbon, Portugal

Fariba Sadri, Imperial College London, UK

Ken Satoh, National Institute of Informatics, Japan
Francesca Toni, University of Pisa, Italy

Paolo Torroni, University of Bologna, Italy

Sponsoring Institutions

v . e
AGENTLINK L.
2y # 4lisboa

FCT

nmﬂﬂnpnad&m:laea‘rmhgh

Table of Contents

Foundations

A Logic for Knowledge, Correctness, and Real Time

Bozena Wozna, Alessio Lomuscioc.vuii ...

Dynamic Logic for Plan Revision in Intelligent Agents

M. Birna van Riemsdijk, Frank S. de Boer, John-Jules Ch. Meyer ...

Contextual Taxonomies

Davide Grossi, Frank Dignum, John-Jules Ch. Meyer...............

From Logic Programs Updates to Action Description Updates

José Julio Alferes, Federico Banti, Antonio Brogi

Dynamic Logic Programming: Various Semantics Are Equal on Acyclic
Programs

Martin Homola e

Architectures

Declarative Agent Control
Antonis C. Kakas, Paolo Mancarella, Fariba Sadri, Kostas Stathis,

Francesca Tont e

Metareasoning for Multi-agent Epistemic Logics

Konstantine Arkoudas, Selmer Bringsjord

Graded BDI Models for Agent Architectures

Ana Casali, Lluis Godo, Carles Sierraccoviiiiienan ..

Interaction

Inferring Trust
Mehdi Dastani, Andreas Herzig, Joris Hulstijn,

Leendert van der Torre

Coordination Between Logical Agents

Chiaki Sakama, Katsumi Inoue 0.,

XII Table of Contents

A Computational Model for Conversation Policies for Agent
Communication
Jamal Bentahar, Bernard Moulin, John-Jules Ch. Meyer,
Brahim Chaib-draq e 178

Verifying Protocol Conformance for Logic-Based Communicating Agents

Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana Patti,
Claudio Schifanella i 196

Planning and Applications
An Application of Global Abduction to an Information Agent which
Modifies a Plan upon Failure - Preliminary Report

Ken Satoh 213

Planning Partially for Situated Agents
Paolo Mancarella, Fariba Sadri, Giacomo Terreni, Francesca Toni ... 230

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals
David C. Han, K. Suzanne Barber i, 249

Organising Software in Active Environments
Benjamin Hirsch, Michael Fisher, Chiara Ghidini, Paolo Busetta 265

Author Index 281

A Logic for Knowledge, Correctness,
and Real Time*

Bozena Wozna and Alessio Lomuscio

Department of Computer Science,
University College London,
Gower Street, London WC1E 6BT,
United Kingdom
{B.Wozna, A.Lomuscio}@cs.ucl.ac.uk

Abstract. We present TCTLKD, a logic for knowledge, correctness and
real time. TCTLKD is interpreted on real time deontic interpreted sys-
tems, and extension to continuous time of deontic interpreted systems.
We exemplify the use of TCTLKD by discussing a variant of the “railroad
crossing system”.

1 Introduction

Logic has a long tradition in the area of formal theories for multi-agent systems
(MAS). Its role is to provide a precise and unambiguous specification language
to describe, reason about, and predict the behaviour of a system.

While in the early 80’s existing logical formalisms from other areas such as
philosophical logic, concurrency theory, etc., were imported with little of no
modification to the area of MAS, from the late 80’s onwards specific formalisms
have been designed, studied, and tailored to the needs of MAS. Of particular
note is the case of epistemic logic, or the logic of knowledge.

Focus on epistemic logics in MAS began with the use of the modal logic
system S5 developed independently by Hintikka [1] and Aumann [2] in formal
logic and economics respectively. This starting point formed the core basis of a
number of studies that appeared in the past 20 years, including formalisations
of group knowledge [3,4,5], combinations of epistemic logic with time [6,7, 8],
auto-epistemic logics [9,10], epistemic updates [11,12], broadcast systems and
hypercubes [13, 14], etc. Epistemic logic is no longer a remarkable special case of
a normal modal system, but has now become an area of study on its own with
regular thematic workshops and conferences.

In particular, combinations of epistemic and temporal logics allow us to rea-
son about the temporal evolution of epistemic states, knowledge of a changing
world, etc. Traditionally, this is achieved by combining a temporal logic for dis-
crete linear time [15, 16, 17] with the logic S5 for knowledge [18]. Various classes

* The authors acknowledge support from the EPSRC (grant GR/S49353), and the
Nuffield Foundation (grant NAL/690/G).

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 1-15, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 B. Wozna and A. Lomuscio

of MAS (synchronous, asynchronous, perfect recall, no learning, etc.) can be
identified in this framework, and axiomatisations have been provided [19,20].
More recently, combinations of branching time logic CTL [21,22, 23] with the
epistemic logic S5 have been studied, and axiomatisation provided [8].

All efforts above have focused on a discrete model of time, either in its linear
or branching versions. While this is useful and adequate in most applications,
certain classes of scenarios (notably robotics and networking) require a model of
time as a continuous flows of events.

In the area of timed-systems the modal logic TCTL has been suggested as an
adequate formalism to model real time. In this paper we propose a logic (which
we call TCTLKD) combining the temporal aspects of TCTL with the notions
defined by the epistemic logic S5, as well as the correctness notion defined in [24].
This combination allows us to reason about the real time evolution of epistemic
states, the correct functioning of multi-agent systems with respect to real time,
and any combination of these.

Traditionally, the semantics of temporal epistemic logic is defined on variants
of interpreted systems to provide an interpretation to the epistemic modalities.
These use the notion of protocol to provide a basis for the action selection mech-
anism of the agents. Since we are working on real time, here we shall use the
finer grained semantics of timed automata to model the agents’ evolution. We
then synchronise networks of timed automata to provide a general model of a
MAS.

The rest of the paper is organised as follows. In Section 2 we define the
concept of interpreted systems on real time by taking the parallel composition
of timed automata. In Section 3 we define the logic TCTLKD as an extension
to real time of the logic for knowledge and correctness as defined in [24, 25]. In
Section 4 we provide a case study analysis to demonstrate its use in applications.
We conclude in Section 5 by discussing related and future work on this subject.

2 Interpreted Systems over Real Time

Interpreted systems are traditionally defined as a set of infinite runs on global
states [18]. In this model each run is a discrete sentence representing events.
At each global state, each agent selects an action according to a (possibly non-
deterministic) protocol. In this section we extend (discrete) interpreted systems
to real time interpreted systems in two aspects. First, we specify the agents’
behaviour by a finer grained semantics: timed automata. Second, by means of
parallel composition of timed automata, we define a class of interpreted systems
operating on real time.

We begin by recalling the concept of timed automata, as introduced in [26].
Timed automata are extensions of finite state automata with constraints on
timing behaviour. The underlying finite state automata are augmented with a
set of real time variables.

A Logic for Knowledge, Correctness, and Real Time 3

2.1 Timed Automata

Let IR = [0,00) be a set of non-negative real numbers, IRy = (0,00) be a set of
positive real numbers, IN = {0,1,2,...} a set of natural numbers, and X a finite
set of real variables, called clocks. The set of clock constraints over X is defined
by the following grammar:

cc:=true |z ~c|ccAc,

wherez € X, ¢ € IN, and ~ € {<, <,=,>,>}. The set of all the clock constraints
over X is denoted by C(X). A clock valuation on X is a tuple v € R*! The
value of the clock z in v is denoted by v(z). For a valuation v and § € IR, v +
denotes the valuation v such that for all z € X, v'(x) = v(z) + §. Moreover,
let X* be the set X U {xo}, where x¢ is a clock whose value is always 0, that
is, its value does not increase with time as the values of the other clocks. Then,
an assignment as is a function from X to X*, and the set of all the assignments
over X is denoted by A(X). By v[as] we denote the valuation v’ such that for
all z € X, if as(z) € X, then v/(z) = v(as(x)), otherwise v'(z) = 0.

Let v € RI*!| the satisfaction relation |= for a clock constraint cc € C(X) is
defined inductively as follows:

v [true,
vE(x~c) iff v(z)~c,
v (ceAced) iff v=ccand v = cd.

For a constraint cc € C(X'), by [c¢] we denote the set of all the clock valuations
satisfying cc, i.e., [ec] = {v € RI* | v |= cc}.

Definition 1 (Timed Automaton). A timed automaton is a tuple TA =
(3,L,1°, X, E,7), where

— 3 is a finite set of actions,

— L is a finite set of locations,

19 € L is an initial location,

— X is a finite set of clocks,

— ECLx3xC(X)xAX) x L is a transition relation,

— J: L — C(X) is a function, called alocation invariant, which assigns to each
location | € L a clock constraint defining the conditions under which TA can
stay in [.

FEach element e of E is denoted by [LSSV, where 1 is a source location, 1’

is a target location, a is an action, cc is the enabling condition for e, and as is
the assignment for e.

7

Note that we deal with “diagonal-free” automata. This is because ultimately we
would like to verify MAS specified in this formalism, and the model checking
methods for real time systems (based on the Difference Bound Matrices [27],
variants of Boolean Decision Diagrams [28,29], or SAT methods [30, 31, 32]) are
problematic when the components of the systems are modelled by “diagonal
automata”.

4 B. Wozna and A. Lomuscio

In order to reason about systems represented by timed automata, for a set
of propositional variables PV, we define a valuation function Vyy4 : L — 2FV,
which assigns propositions to the locations.

Definition 2 (Dense State Space). The dense state space of a timed au-
tomaton TA = (3,L,1°, X, E,J) is a structure D(TA) = (Q, ¢", —), where

- Q=Lx RI*! s the set of all the instantaneous states,

— ¢ = (19,0%) with v°(x) = 0 for all x € X, is the initial state,

— = C Qx (3UR) x Q is the transition relation, defined by action- and
time-successors as follows:

e fora € 3, (IL,v) = (I',v)) iff (3ec € C(X))(3as € A(X)) such that
1“° 1 e B, v € [ec],v’ = vlas] and v' € [3(I")] (action successor),

e ford € R, (I,v) 3, (Lv+90) iff v+ € [I3(1)] (time successor).
For (I,v) € Q, let (I,v) + 6 denote (I,v+). A g-run p of a TA is a sequence

of instantaneous states: qq % g + 00 2 ¢ &, G +0 D g % ..., where
Go=q € Q,a; € 3,and §; € IRy for each i € IN. A run p is said to be progressive
iff Yiewd; is unbounded. A 7A is progressive if all its runs are progressive. For
simplicity of presentation, we consider only progressive timed automata. Note
that progressiveness can be checked as in [33].

2.2 Parallel Composition of Timed Automata

In general, we will model a multi-agent system by taking several timed automata
running in parallel and communicating with each other. These concurrent timed
automata can be composed into a global timed automaton as follows: the tran-
sitions of the timed automata that do not correspond to a shared action are
interleaved, whereas the transitions labelled with a shared action are synchro-
nised.

There are many different definitions of parallel composition. We use a multi-
way synchronisation, requiring that each component that contains a communi-
cation transition (labelled by a shared action) has to perform this action.

Let TA; = (3, L, 1Y, E;, X;,3;) be a timed automaton, for i = 1,...,m. To
define a parallel composition of m timed automata, we assume that L; N L; = ()
for all 4,5 € {1,...,m}, and i # j. Moreover, by 3(a) = {1 <i<m|a € 3;}
we denote a set of numbers of the timed automata containing an action a.

Definition 3 (Parallel Composition). The parallel composition of m timed
automata TA; is a timed automaton TA = (3,L,1°, E,X,7J), where 3 = J;~, 3,
L = Hzr;l Li: 0= (l(l]v) lgv)a X = UT;1 Xi: j(lla SRR) lm) = /\111 jz(lz); and a
transition ((l1, ..., L), a,cc,as, (15, ...,10)) € Eiff (Vi € 3(a)) (I;,a,cc;,as;,15) €
By, cc = N;e3(a) €05 08 = Uje3(q) 980, and (Vj € {1,...,m}\ 3(a)) I; = 1.

Note that in the above any automaton is allowed to set a value of any clock,
including the ones associated with other agents.

Let PV be a set of propositional variables containing the symbol true, V74, :
L; — 2PV be a valuation function for the ith automaton, where i € {1,...,m},

A Logic for Knowledge, Correctness, and Real Time 5

and PV = |J/~, PV;. Then, the valuation function V74 : L — 2PV for the par-
allel composition of m timed automata, is defined as follows Vza((l1,...,ln)) =

Uit Vza, (1),

2.3 Real Time Deontic Interpreted System

In line with much of the multi-agent systems literature, we use interpreted sys-
tems as a semantics for a temporal epistemic language. For this, we need to
adapt them to work on real time: this is why we take timed automata as the un-
derlying modelling concept (as opposed to the standard protocols of interpreted
systems). To define real time deontic interpreted systems, we first partition the
set of clock valuations as in [34].

Let 7A be a timed automaton, C(7A) C C(X) be a non-empty set containing
all the clock constrains occurring in any enabling condition used in the transi-
tion relation F or in a state invariant of 7.4. Moreover, let ¢,,q. be the largest
constant appearing in C(TA). For o € IR, frac(o) denotes the fractional part of
o, and |o| denotes its integral part.

Definition 4 (Equivalence of Clock Valuations). For two clock valuations

v and v in]R‘X‘,we say that v ~ v iff for all x,y € X the following conditions
are met:

1. v(x) > Cmax V' (2) > Cmax
2. if v(x) < cmaz and v(y) < Cmax then
a.) [v(z)] = [v'(z)],
b.) frac(v(x)) =0 iff frac(v'(x)) =0, and
c.) frac(v(z)) < frac(v(y)) iff frac(v'(z)) < frac(v'(y)).

The equivalence classes of the relation ~ are called zones, and denoted by Z,
Z' and so on.

Now we are ready to define a Real Time Deontic Interpreted System that will
be semantics for the logic presented in the next section.

Let AG be a set of m agents, where each agent is modelled by a timed au-
tomaton TA; = (3, L, 1, E;, X;,T3;), for i € {1,...,m}. Moreover, assume, in
line with [24, 25], that for every agent, its set L; of local locations is partitioned
into “allowed” locations, denoted by G;, and “disallowed” locations, denoted by
R; and defined by R; = L; \ G;. We shall call these locations green and red re-
spectively. Further, assume that the parallel composition 74 = (3, L, 1°, E, X, J)
of all the agents is given', and that [; : Q — L; is a function that returns the
location of agent 7 from a global state. Then, a real time deontic interpreted
system is defined as follows.

Definition 5 (Real Time Deontic Interpreted System). A real time deon-
tic interpreted system is a tuple M. = (Q,q°, —,~%,... . ~K RO .. RO V.),
where:

! Note that the set L, which defines all the possible global locations, is defined as the
Cartesian product L1 X ... X Ly, such that L1 D G1,..., Ly O G

6 B. Wozna and A. Lomuscio

- Q, ¢°, and — are defined as in Definition 2,

— ~K C QxQ is arelation defined by: (I,v) ~5 (I',0") iff 1;((1,v)) = L;((I",v"))
and v ~v', for each agent i. Obviously ~X is an equivalence relation.

RP C Q x Q is a relation defined by: (1,v)RO (I',v") iff 1;((I',v")) € Gi, for

each agent i.

— Vo : Q — 2%V is a valuation function that extends Vi as follows V.((1,v)) =
Vra(l), i.e., V. assigns the same propositions to the states with the same

locations.

3 The Logic TCTLKD

In this section, we formally present the syntax and semantics of a real time
computation tree logic for knowledge and correctness (TCTLKD), which extends
the standard TCTL [34], the logic for real time, by means of modal operators
for knowledge and correctness.

The language generalises classical propositional logic, and thus it contains the
standard propositional connectives = (not) and V (or); the remaining connectives
(A (and), — (implies), « (if, and only if) are assumed to be introduced as
abbreviations in the usual way. With respect to real time temporal connectives,
we take as primitives U; (for “until within interval I”), and G; (for “always
within interval I”); the remaining operators, F; (for “eventually within interval
I”) and Ry (for “release within interval I”), are assumed to be introduced as
abbreviations in the usual way. The language also contains two path quantifiers:
A (for “for all the runs”) and E (for “there exists a run”). Further, we assume
aset AG = {1,...,m} of agents, and we use the indexed modalities K;, O;, and
Ki to represent the knowledge of agent ¢, the correct functioning circumstances
of agent i, and the knowledge of agent ¢ under assumption of correct functioning
of agent j, respectively. Furthermore, we use the indexed modalities D, Cr to
represent distributed and common knowledge in a group of agents I" C AG, and
we use the operator Ej to represent the concept “everybody in I" knows”.

3.1 Syntax of TCTLKD

We assume a set PV of propositional variables, and a finite set AG of m agents.
Furthermore, let I be an interval in IR with integer bounds of the form [n,n’],
[n,n'), (n,n'], (n,n’), (n,00), and [n,00), for n,n’ € IN. The set of TCTLKD
formulas is defined inductively as follows:

e every member p of PV is a formula,

e if o and (3 are formulas, then so are —~a, a V 3, EGra, and E(aU;f3),
e if v is formula, then so are K;a, Kza, and O;a, for i,j € AG,

e if o is formula, then so are Dra, Cra, and Era, for I' C AG.

The other basic temporal, epistemic, and correctness modalities are defined
as follows:

A Logic for Knowledge, Correctness, and Real Time 7

EF;p = E(trueUp), AF @ = -EG(—p), AGryp def —EF;(—),
AU 8) % <E(-BU (=B A —a)) A ﬂEGI(ﬂﬂ)
A(Rsf) < ~E(aU5), BoR15) Y - A(~aU;-),

KO[—ﬁKﬁO[@a_ﬁOﬁa KJ :ﬁK?ﬁa,

def def def
DpOz : ﬁDFﬁOQ CpOz : ﬁC]ﬂﬁOé, E[‘Oé = "E[‘"Oé.

3.2 Semantics of TCTLKD

Let AG be a set of m agents, where each agent is modelled by a timed automaton
TA; = (34, Li, 19, E;, X3, 3,), for i = {1,...,m}, TA = (3,L,1° E,X,J) be their
parallel composition, and M. = (Q,q°, —,~%,... . ~K RY ... RY V.) be a
real time deontic interpreted system. Moreover, let p = qo Lt g +6 B ¢ &,

@ +6 3 g % be arun of TA such that 0; € Ry for i € IN, and let f74(q)
denote the set of all such ¢g-runs of 7A. In order to give a semantics to TCTLKD,
we introduce the notation of a dense path m, corresponding to run p. A dense
path 7w, corresponding to p is a mapping from IR to a set of states? such that
mp(r) = s; + 0 for r = Eézoéj + 6 with 4 > 0 and 0 < § < J;. Moreover, as
usual, we define the following epistemic relations: ~E= Uier ~is NIQ: (~E)t
(the transitive closure of ~%), and ~P= (. ~;, where I' C AG.

Definition 6 (Satisfaction of TCTLKD). Let M.,q = « denote that o is
true at state s in the model M.. M, is omitted, if it is implicitly understood. The
relation |= is defined inductively as follows:

Q0 Fp iff p € Ve(qo),
qo F iff qo = @,
wEEVY iffqg E e orq E Y,
wEENY iffq @ and g0 E 1,
9 EE@@U) iff 3 p € fralq))3r € I)[m,(r) = ¢ and (V' <7) m,(r") = @],
a0 F EGre) iff (3 p € fralqo) (VT €I)my(r) E ¢,
@ E Ka iff (Vg € Q)((qo Nz q) z'mplies q Ea),
(

9 F O iff (V¢ € Q)(aoR Cd) implies 7 E o),

@ FKla iff (Vq' € Q)((qo NZK q and quO ") implies q' |= o),
qQ Dpa zﬁ Vq' € Q)((qo NF q') implies ¢’ = «

¢ = Era iff (Vq' € Q)((qo ~% ¢') implies ¢’ |=),

a0 E Cra iff (Vq' € Q)((qo ~F ¢') implies ¢’ |=).

Intuitively, the formula E(aU;3) holds at a state gp in a real time deontic
interpreted system M, if there exists a run starting at g such that § holds in
some state in time interval I, and until then « always holds. The formula EG;«
holds at a state go in a real time deontic interpreted system M, if there exists a

2 This can be done because of the assumption that &; > 0, i.e., §; € IR.

8 B. Wozna and A. Lomuscio

run starting at g¢o such that « holds in all the states on the run in time interval
I. The formula K;« holds at state gy in a real time deontic interpreted system
M. if a holds at all the states that are indistinguishable for agent 7 from gg. The
formula O;a holds at state o in a real time deontic interpreted system M, if a
holds at all the states where agent i is functioning correctly. The formula IA(ga
holds at state gp in a real time deontic interpreted system M, if « holds at all
the states that agent ¢ is unable to distinguish from the actual state qg, and in
which agent j is functioning correctly. The formula Era holds at state gg in a
real time deontic interpreted system M, if « is true in all the states that the
group I of agents is unable to distinguish from the actual state gy. Note that
Era can be defined by A, K;a. The formula Cra is equivalent to the infinite
conjunction of the formulas E’}a for £ > 1. So, Cra holds at state go in a real
time deontic interpreted system M, if everyone knows « holds at ¢g, everyone
knows that everyone knows a holds at qg, etc. The formula Dpa holds at state
qo in a real time deontic interpreted system M, if the “combined” knowledge
of all the agents in I" implies . We refer to [34, 18, 24] for more details on the
operators above.

A TCTLKD formula ¢ is satisfiable if there exists a real time deontic in-
terpreted system M, = (Q,q°, —, ~%, ..., ~E RO ... R2 V.) and a state q
of M., such that M.,q = ¢. A TCTLKD formula ¢ is valid in M. (denoted
M. |) if M.,q° = @, i.e., ¢ is true at the initial state of the model M..

Note that the “full” logic of real time (TCTL) is undecidable [34]. Since
real time deontic interpreted systems can be shown to be as expressive as the
TCTL-structure of a time graph [34], and the fusion [35] between TCTL, S5
for knowledge [18], and K D457 for the deontic dimension [24] is a proper
extension of TCTL, it follows that problem of satisfiability for the TCTLKD
logic will be also undecidable. Still, it is easy to observe that given a TCTLKD
formula ¢ and a real time deontic interpreted system M., the problem of deciding
whether M. | ¢ is decidable. This result is our motivation for introducing
TCTLKD. We are not interested in using the whole class of real time deontic
interpreted systems, but only to study particular examples by means of this
logic. We exemplify this in the next section.

4 Applications

One of the motivations for developing the formalismm presented in this paper is
that we would like to be able to analyse what epistemic and temporal properties
hold, when agents follow or violate their specifications while operating on real
time.

As an example of this we discuss the Railroad Crossing System (RCS) [36], a
well-known example in the literature of real-time verification. Here we analyse
the scenario not only by means of temporal operators but also by means of
epistemic and correctness modalities. The system consists of three agents: Train,
Gate, and Controller running in parallel and synchronising through the events:
“approach”, “exit”, “lower”, and “raise”.

A Logic for Knowledge, Correctness, and Real Time 9

approach lower approach
*
x =0 x9:=0 x3:=0

exit in down raise lower
1 < 500 1 > 300 100 < 29 < 200 29 < 100 3 < 100 3 = 100
raise exit
<7
Ty = O x3:=0
Traln Gate Controller

Fig. 1. Agents Train, Gate, and Controller for the correct RCS system

Let us start by considering what we call the correct RCS, as modelled by
timed automata (Figure 1). The correct RCS operates as follows. When Train
approaches the crossing, it sends an approach signal to Controller, and enters the
crossing between 300 and 500 seconds from this event. When Train leaves the
crossing, it sends an exit signal to Controller. Controller sends a signal lower to
Gate exactly 100 seconds after the approach signal is received, and sends a raise
signal within 100 seconds after exit. Gate performs the transition down within
100 seconds of receiving the request lower, and responds to raise by moving up
between 100 and 200 seconds.

Assume the following set of propositional variables: PV = {p,q,t,s} with
PVTrain = {p,a}, PVcate = {t}, and PVeont = {s}. The proposition p rep-
resents the fact that an approach signal was sent by Train, q that Train is on
the cross, v that Gate is down, and s that Controller sent the signal lower to
Gate. A real time deontic interpreted system Mpgcg can be associated with the
correct RCS as follows. For the sets Ly = {to,t1,t2,t3}, Lo = {g0,91,92,93},
and Ls = {co, c1, 2, c3} of locations for Train, Gate, and Controller respectively,
the set of “green” locations and the dense state space for RCS are defined by
Gy =1L1,Go =Ly, Gy = Ly, and Q = Ly x Ly x Ly xIR?, respectively. The valua-
tion functions for Train (Vppqin : Ly — 2FV7rain) Gate (Vgage : Lo — 2FVGate),
and Controller (Voons : Lz — 2FYcont) are defined as follows:

- VTraz'n(tl) = {p}a VTTain(tZ) {q} and VTrain(tO) - VTrain(tS) = @
- VGate(f]Z) - {t}v and VGate() VGate(gl) = VGate(QB) = (Z)
- VCont<C2) {5} and VCont(CO) VCont(Cl) = VCont(CS) =0.

The valuation function Vrcg : L1 x Lo x Lz — 2PV, for the RCS system, is built
as follows: VRCS(l) = VTrain(ll) U VGate(l2) @] VCont(ZS); for all | = (ll,lg,lg) S
L1 x Ly x Ls. Thus, according to the definition of the real time deontic interpreted
system, the valuation function Vas,es @ L1 X Ly x Lz x R® — 2PV of Mpcg is
defined by VMRCS (l, U) = VRCS(l)-

Using the TCTLKD logic, we can specify properties of the correct RCS sys-
tem that cannot be specified by standard propositional temporal epistemic logic.
For example, we consider the following:

10 B. Wozna and A. Lomuscio

AG[O,oo] (F' - KController (AF[SOO,oo]q)) (1)
AGi0,00)K7rain (b — AF[g,2001%) (2)
Kecontrotier (5 — AF[,100t) (3)

Formula (1) states that forever in the future if an approach signal is sent by
agent Train, then agent Controller knows that in some point after 300 seconds
later Train will enter the cross. Formula (2) states that forever in the future agent
Train knows that, if it sends an approach signal, then agent Gate will send the
signal down within 200 seconds. Formula (3) states that agent Controller knows
that if it sends an lower signal, then agent Gate will send the signal down within
100 seconds.

All the formulas above can be shown to hold on Mgrcg on the initial state.
We can also check that the following properties do not hold on Mgzcs.

AGg,00) (P — Kcontrotier (AF[0,30019)) (4)
Krrain(AG[o,00)EF[10,00)5) (5)
Kcontrotter (5 - AF[O,SO] t) (6)

Formula (4) states that forever in the future if an approach signal is sent
by agent Train, then agent Controller knows that at some point in the future
within 300 seconds Train will enter the crossing. Formula (5) states that agent
Train knows that always in the future it is possible that within interval [10, 90]
the gate will be down. Formula (6) states that agent Controller knows that if
it sends the lower signal, then agent Gate will send the signal down within 50
seconds.

Let us now consider a variant of the RCS system described above, and let us
assume that agent Controller is faulty. Let us assume that because of a fault the
signal lower may not be sent in the specified interval, and the transition to the
faulty state ¢3 may be triggered. We are allowing for Controller to recover from
the fault once in ¢ by means of the action lower (see Figure 2).

@ approach lower +®
— - 5
T 1=

faultylower
23> 100

ralac
exit down f 3 < 100
21 < 500 21 > 300 100 < 2 < 200 25 < 100 .
Lot
ralse
T = U
Train Gate Controller

Fig. 2. Agents Train, Gate, and Controller for the faulty RCS system

We examine the scenario by considering the following set of propositional
variables: PV = {p,q,t,s, crash} with PVrrain = {p,q}, PVGate = {t}, and
PYcont = {5, crash}. The propositions p, g, r, and, s have the same meaning as

A Logic for Knowledge, Correctness, and Real Time 11

in the case of the correct RCS system; the proposition crash represents the fact
that Train is on the cross and Gate is still open. A real time deontic interpreted
system Mpcs can be associated with the faulty RCS system as follows®.

For the sets Ly = {to,t1,t2,t3}, Lo = {g0, 91, 92,93}, and Ls = {co,c1,¢2, 3,
Tz, crash} of locations for Train, Gate, and Controller, the set of “green” loca-
tions are defined by G; = L1, G2 = Lo, G3 = {cg, c1,¢2,c3}, respectively. The
dense state space for RCS is defined by @ = Ly x Ly x Lg x IR®. The valuation
functions for Train (Vprqin), Gate (Vaate), and Controller (Vioon:) are defined as
follows:

= Vrrain @+ L1 — ZPVTMM’ and VTrain(tl) = {P}H VTrain(tQ) = {q}a and
VTrain(tO) = VTr(m'n(t3) - @

- VGate : L2 - 2PVGMG, and VGate(QO) - VGate(gl) = VGate(QS) - wa and
VGate(,QZ) = {t}

- VCont : LS - 2PVCUM7 and VCont(CO) = VCont(Cl) = VCont(CB) - VCont(E) -
0, Voont(c2) = {s}, and Vioone(crash) = {crash}.

The valuation functions Vrcyg : L1 X Ly x Ly — 2PV, and Virges @ L1 X L X
L3 x R® — 2PV are defined in the same way as in the correct version of the RCS
System.

Using TCTLKD, we can specify the following properties of the faulty RCS
system. These can be checked to hold on the real time deontic interpreted system
for the faulty RCS.

AG0,00]KTrainOcontrotier (P — AF[0,200]%) (7)
KrrainOcontrotier (9 — AF[g,200]t) (8)
KGentreller (p — AF g a00]t) (9)
AG(0,00)KTrainOcontrolier (merash) (10)
AGo, o REFLE" (—erash) (11)
AG[om]K%SZfZ{"”” (p — AF0,100)5) (12)

Formula (7) states that forever in the future agent Train knows that whenever
agent Controller is functioning correctly, if Train sends the approach signal, then
agent Gate will send the signal down within 200 seconds. Formula (8) states that
agent Train knows that whenever agent Controller is functioning correctly, if the
approach signal was sent by Train, then at some point in the future, within 200
second, Gate will be down. Formula (9) states that agent Train knows that under
the assumption of agent Controller functioning correctly, if the approach signal
was sent by Train, then at some point in the future, within 200 second, Gate
will be down. Formula (10) states that always in the future agent Train knows
that whenever agent Controller is functioning correctly under no circumstances

% Note that the names of the mathematical objects we use to represent the faulty RCS
are the same as the ones employed previously for the correct RCS. Given that these
appear in different contexts we trust no confusion arises.

12 B. Wozna and A. Lomuscio

there will be a situation in which Train is on the crossing and Gate is open.
Formula (11) states that always in the future agent Train knows that under the
assumption of agent Controller functioning correctly, under no circumstances
there will be a situation in which Train is on the crossing and Gate is open.
Formula (12) states that always in the future agent Train knows that under the
assumption of agent Controller functioning correctly, if the approach signal was
sent by Train, then at some point in the future, within 100 second, the signal
lower will be sent by Controller.
The following formulas can be checked not to hold on the faulty RCS.

Krrain(p — AF[g 2001%) (13)
AG[07OO]KTrain(—|Cta5h) (14)
AG(0,00)KTrain(p — AF[0,100)5) (15)

Formula (13) states that agent Train knows that, if it sends the approach sig-
nal, then at some point in the future, within 200 second, Gate will be down.
Formula (14) states that always in the future agent Train knows that under no
circumstances there will be a situation where Train is on the cross and Gate is
open. Formula (15) states that always in the future agent Train knows that, if it
sends the approach signal, then at some point in the future, within 100 second,
the signal lower will be sent by Controller.

5 Conclusions

In the paper we have proposed TCTLKD, a real time logic for knowledge and
correctness. TCTLKD is a fusion of three well known logics: TCTL for real time
[34], S5 for knowledge [18], and KD45'~7 for the correctness dimension [24].
Previous attempts of combinations of real time and knowledge have included
[37,38,39]. In [37] a technique for determining the temporal validity of shared
data in real-time distributed systems is proposed. The approach is based on
a language consisting of Boolean, epistemic, dynamic, and real-time temporal
operators, but the semantics for these is not defined. In [38] a fusion of the
branching time temporal logic (CTL) and the standard epistemic logic is pre-
sented. The semantics of the logic is given over an interpreted system defined
like in [18] with the difference of using runs defined from real numbers. This
language is used to establish sound and complete termination conditions for mo-
tion planning of robots, given initial and goal states. [39] presents a framework
for knowledge-based analysis of clocks synchronisation in systems with real-time
constraints. In that work a relation of timed precedence as a generalisation of
previous work by Lamport is defined, and it is shown how (inherent) knowledge
about timed precedences can be applied to synchronise clocks optimally. Like
in [38], the semantics consists of runs that are functions over real time. The
epistemic relations defined in this work assume that agents have perfect recall.
Our paper differs from the approaches above by considering quantitative
temporal operators such as EF[q 19 (meaning “possibly within 10 time units”),

A Logic for Knowledge, Correctness, and Real Time 13

rather than qualitative operators EF (meaning “possibly in the future”, but with
no bound), and by not forcing the agents to have perfect recall. In addition, the
logic TCTLKD also incorporates a notion of correctness of execution with respect
to specifications, a concept not tackled in previous works, and associates a set of
clocks to every agent not just to the system as a whole. While the satisfiability
problem for TCTLKD is undecidable, the TCTLKD model checking problem,
i.e., the problem of validity in a given model, is decidable. Given this, it seems
worthwhile to develop model checking methods for TCTLKD in the same fashion
to what has been pursued for the same modalities but on discrete time [42]. In
fact, a preliminary version of the TCTLK* bounded model checking method is
presented in [40, 41].

References

1. Hintikka, J.: Knowledge and Belief, An Introduction to the Logic of the Two

Notions. Cornell University Press, Ithaca (NY) and London (1962)

Aumann, R.J.: Agreeing to disagree. Annals of Statistics 4 (1976) 1236-1239

3. Fagin, R., Vardi, M.Y.: Knowledge and implicit knowledge in a distributed envi-
ronment: Preliminary report. In Halpern, J.Y., ed.: TARK: Theoretical Aspects
of Reasoning about Knowledge, San Francisco (CA), Morgan Kaufmann (1986)
187-206

4. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54 (1992) 319-379

5. van der Hoek, W.: Sytems for knowledge and belief. Journal of Logic and Com-
putation 3 (1993) 173-195

6. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time. In: ACM Symposium on Theory of Computing (STOC ’86), Baltimore,
USA, ACM Press (1986) 304-315

7. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time
1: lower bounds. Journal of Computer and System Sciences 38 (1989) 195-237

8. van der Meyden, R., Wong, K.: Complete axiomatizations for reasoning about
knowledge and branching time. Studia Logica 75 (2003) 93-123

9. Marek, W., Truszczyniski, M.: Autoepistemic logic. Journal of the ACM 38 (1991)
587-618

10. Moore, R.: Possible-world semantics autoepistemic logic. In: Proceedings of Work-
shop on Non-Monotonic Reasoning, The AAAI Press (1984) 344-354

11. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcement, common
knowledge, and private suspicions. In Gilboa, I., ed.: Proceedings of the 7th Con-
ference on Theoretical Aspects of Rationality and Knowledge (TARK-98), San
Francisco, Morgan Kaufmann (1998) 125-132

12. Lomuscio, A., Ryan, M.: An algorithmic approach to knowledge evolution. Artifi-
cial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM)
13 (1999)

13. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Knowledge-based programs.
Distributed Computing 10 (1997) 199-225

o

4 The TCTLK logic is like TCTLKD but it does not contain the correct functioning
operator, i.e, the operator O; for 7 € AG.

14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

B. Wozna and A. Lomuscio

Lomuscio, A., van der Meyden, R., Ryan, M.: Knowledge in multi-agent systems:
Initial configurations and broadcast. ACM Transactions of Computational Logic
1 (2000)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag (1991)

Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer-
Verlag (1995)

Manna, Z., Pnueli, A.: Completing the temporal picture. In: Selected papers of the
16th international colloquium on Automata, languages, and programming, Elsevier
Science (1991) 97-130

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

Halpern, J., Meyden, R., Vardi, M.Y.: Complete axiomatisations for reasoning
about knowledge and time. SIAM Journal on Computing 33 (2003) 674-703

van der Meyden, R.: Axioms for knowledge and time in distributed systems with
perfect recall. In: Proceedings, Ninth Annual IEEE Symposium on Logic in Com-
puter Science, Paris, France, IEEE Computer Society Press (1994) 448-457
Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta
Informatica 20 (1983) 207-226

Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of
Theoretical Computer Science, Elsevier Science Publishers (1990) 996-1071
Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. Journal of Computer and System Sciences 30 (1985)
1-24

Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75 (2003)
63-92

Lomuscio, A., Sergot, M.: Violation, error recovery, and enforcement in the bit
transmission problem. Journal of Applied Logic 1(2): 93-116, 2004

Alur, R., Dill, D.: Automata for modelling real-time systems. In: Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP’90).
Volume 443 of Lecture Notes in Computer Science., Springer-Verlag (1990) 322-335
Dill, D.: Timing assumptions and verification of finite state concurrent systems. In:
Automatic Verification Methods for Finite-State Systems. Volume 407 of Lecture
Notes in Computer Science., Springer-Verlag (1989) 197-212

Behrmann, G., Larsen, K., Pearson, J., Weise, C., Yi, W.: Efficient timed reacha-
bility analysis using clock difference diagrams. In: Proceedings of the 11th Inter-
national Conference on Computer Aided Verification (CAV’99). Volume 1633 of
Lecture Notes in Computer Science., Springer-Verlag (1999) 341-353

Wang, F.: Efficient data structure of fully symbolic verification of real-time soft-
ware systems. In: Proceedings of the 6th International Conference on Tools and
Algorithms for Construction and Analysis of Systems (TACAS’00). Volume 1785
of Lecture Notes in Computer Science., Springer-Verlag (2000) 157-171

Penczek, W., Wozna, B., Zbrzezny, A.: SAT-based bounded model checking for the
universal fragment of TCTL. Technical Report 947, ICS PAS, Ordona 21, 01-237
Warsaw (2002)

Penczek, W., Wozna, B., Zbrzezny, A.: Towards bounded model checking for the
universal fragment of TCTL. In: Proceedings of the 7th International Symposium
on Formal Techniques in Real-Time and Fault Tolerant Systems (FTRTFT’02). Vol-
ume 2469 of Lecture Notes in Computer Science., Springer-Verlag (2002) 265-288

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

A Logic for Knowledge, Correctness, and Real Time 15

Seshia, S., Bryant, R.: Unbounded, fully symbolic model checking of timed au-
tomata using boolean methods. In: Proceedings of the 15th International Confer-
ence on Computer Aided Verification (CAV’03). Volume 2725 of Lecture Notes in
Computer Science., Springer-Verlag (2003) 154-166

Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Formal Methods in System Design 18 (2001) 25-68

Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real-time. Information
and Computation 104 (1993) 2-34

Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press (2001)
Kang, 1., Lee, I.: An efficient state space generation for the analysis of real-time
systems. In: Proceedings of International Symposium on Software Testing and
Analysis. (1996)

Anderson, S., Kuster-Filipe, J.: Guaranteeing temporal validity with a real-time
logic of knowledge. In: Proceedings of the 1st International Workshop on Data
Distribution for Real-Time Systems (DDRTS’03), ICDCS 2003 Workshop, Provi-
dence, Rhode Island, USA (2003) 178-183

Brafman, R.I., Latombe, J.C., Moses, Y., , Shoham, Y.: Application of a logic of
knowledge to motion planning under uncertainty. Journal of the ACM 44 (1997)
633-668

Moses, Y., Bloom, B.: Knowledge, timed precedence and clocks. In: Proceedings
of the 13th ACM symposium on Principles of Distributed Computing, ACM Press
(1994) 274-303

Wozna, B., Lomuscio, A., Penczek, W.: Verification of deontic and epistemic prop-
erties of multiagent systems and its application to the bit transmission problem
with faults. In: Proceedings of the 2nd Workshop on Logic and Communication in
Multi-Agent Systems (LCMAS’04). (2004)

Lomuscio, A., Wozna, B., Penczek, W.: Bounded model checking for knowledge
over real time. In: Proceedings of the International Workshop on Concurrency,
Specification and Programming (CS&P’04). Volume 170 of Informatik-Berichte.
(2004) 398-414

Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted sys-
tems by model checking via OBDD’s. In: Proceedings of the Sixteenth European
Conference on Artificial Intelligence (ECAI04). (2004)

Dynamic Logic for Plan Revision in Intelligent
Agents

M. Birna van Riemsdijk!, Frank S. de Boer'?3, and John-Jules Ch. Meyer!

L 1CS, Utrecht University, The Netherlands
2 CWI, Amsterdam, The Netherlands
3 LIACS, Leiden University, The Netherlands

Abstract. In this paper, we present a dynamic logic for a propositional
version of the agent programming language 3APL. A 3APL agent has
beliefs and a plan. The execution of a plan changes an agent’s beliefs.
Plans can be revised during execution. Due to these plan revision capa-
bilities of 3APL agents, plans cannot be analyzed by structural induction
as in for example standard propositional dynamic logic. We propose a
dynamic logic that is tailored to handle the plan revision aspect of 3APL.
For this logic, we give a sound and complete axiomatization.

1 Introduction

An agent is commonly seen as an encapsulated computer system that is situated
in some environment and that is capable of flexible, autonomous action in that
environment in order to meet its design objectives [1]. Programming these flexible
computing entities is not a trivial task. An important line of research in this area,
is research on cognitive agents. These are agents endowed with high-level mental
attitudes such as beliefs, desires, goals, plans, intentions, norms and obligations.
Intelligent cognitive agents should be able to reason with these mental attitudes
in order to exhibit the desired flexible problem solving behavior.

The very concept of (cognitive) agents is thus a complex one. It is inperative
that programmed agents be amenable to precise and formal specification and
verification, at least for some critical applications. This is recognized by (po-
tential) appliers of agent technology such as NASA, which organizes specialized
workshops on the subject of formal specification and verification of agents [2, 3].

In this paper, we are concerned with the verification of agents programmed
in (a simplified version of) the cognitive agent programming language 34 PL*
[4,5,6]. This language is based on theoretical research on cognitive notions
[7,8,9,10]. In the latest version [6], a 3APL agent has a set of beliefs, a plan
and a set of goals. The idea is, that an agent tries to fulfill its goals by selecting
appropriate plans, depending on its beliefs about the world. Beliefs should thus
represent the world or environment of the agent; the goals represent the state of

1 3APL is to be pronounced as “triple-a-p-1”.

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 16-32, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Dynamic Logic for Plan Revision in Intelligent Agents 17

the world the agent wants to realize and plans are the means to achieve these
goals.

As explained, cognitive agent programming languages are designed to pro-
gram flexible behavior using high-level mental attitudes. In the various lan-
guages, these attitudes are handled in different ways. An important aspect of
3APL is the way in which plans are dealt with. A plan in 3APL can be executed,
resulting in a change of the beliefs of the agent?. Now, in order to increase the
possible flexibility of agents, 3APL [4] was endowed with a mechanism with
which the programmer can program agents that can revise their plans during
execution of the agent. This is a distinguishing feature of 3APL compared to
other agent programming languages and architectures [11,12,13,14]. The idea
is, that an agent should not blindly execute an adopted plan, but it should be
able to revise it under certain conditions. As this paper focusses on the plan
revision aspect of 3APL, we consider a version of the language with only beliefs
and plans, i.e., without goals. We will use a propositional and otherwise slightly
simplified variant of the original 3APL language as defined in [4].

In 3APL, the plan revision capabilities can be programmed through plan
revision rules. These rules consist of a head and a body, both representing a
plan. A plan is basically a sequence of so-called basic actions. These actions can
be executed. The idea is, informally, that an agent can apply a rule if it has a plan
corresponding to the head of this rule, resulting in the replacement of this plan
by the plan in the body of the rule. The introduction of these capabilities now
gives rise to interesting issues concerning the characteristics of plan execution,
as will become clear in the sequel. This has implications for reasoning about the
result of plan execution and therefore for the formal verification of 3APL agents,
which we are concerned with in this paper.

To be more specific, after defining (a simplified version of) 3APL and its
semantics (section 2), we propose a dynamic logic for proving properties of 3APL
plans in the context of plan revision rules (section 3). For this logic, we provide
a sound and complete axiomatization (section 4).

As for related work, verification of agents programmed in an agent program-
ming language has for example been addressed in [15]. This paper addresses
model checking of the agent programming language AgentSpeak. A sketch of
a dynamic logic to reason about 3APL agents has been given in [5]. This logic
however is designed to reason about a 3APL interpreter or deliberation language,
whereas in this paper we take a different viewpoint and reason about plans. In
[16], a programming logic (without axiomatization) was given for a fragment of
3APL without plan revision rules. Further, the operational semantics of plan
revision rules is similar to that of procedures in procedural programming. In
fact, plan revision rules can be viewed as an extension of procedures. Logics
and semantics for procedural languages are for example studied in De Bakker
[17]. Although the operational semantics of procedures and plan revision rules
are similar, techniques for reasoning about procedures cannot be used for plan

2 A change in the environment is a possible “side effect” of the execution of a plan.

18 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

revision rules. This is due to the fact that the introduction of these rules results
in the semantics of the sequential composition operator no longer being com-
positional (see section 3). This issue has also been considered from a semantic
perspective in [18,19]. In [20], a framework for planning in dynamic environ-
ments is presented in a logic programming setting. The approach is based on
hierarchical task network planning. The motivation for that work is similar to
the motivation for the introduction of plan revision rules.

To the best of our knowledge, this is the first attempt to design a logic and
deductive system for plan revision rules or similar language constructs. Consid-
ering the semantic difficulties that arise with the introduction of this type of
construct, it is not a priori obvious that it would be possible at all to design a
deductive system to reason about these constructs. The main aim of this work
was thus to investigate whether it is possible to define such a system and in
this way also to get a better theoretical understanding of the construct of plan
revision rules. Whether the system presented in this paper is also practically
useful to verify 3APL agents, remains to be seen and will be subject to further
research.

2 3APL

2.1 Syntax

Below, we define belief bases and plans. A belief base is a set of propositional
formulas. A plan is a sequence of basic actions and abstract plans. Basic actions
can be executed, resulting in a change to the beliefs of the agent. An abstract
plan can, in contrast with basic actions, not be executed directly in the sense
that it updates the belief base of an agent. Abstract plans serve as an abstraction
mechanism like procedures in procedural programming. If a plan consists of an
abstract plan, this abstract plan could be transformed into basic actions through
the application of plan revision rules, which will be introduced below?.

In the sequel, a language defined by inclusion shall be the smallest language
containing the specified elements.

Definition 1. (belief bases) Assume a propositional language £ with typical
formula g and the connectives A and — with the usual meaning. Then the set of
belief bases X with typical element o is defined to be p(£).*

Definition 2. (plans) Assume that a set BasicAction with typical element a is
given, together with a set AbstractPlan with typical element p. Then the set of
plans IT with typical element 7 is defined as follows:

— BasicAction U AbstractPlan C IT,
— if ¢ € (BasicAction U AbstractPlan) and = € IT then c¢;7 € II.

3 Abstract plans could also be modelled as non-executable basic actions.
4 ©(L) denotes the powerset of L.

Dynamic Logic for Plan Revision in Intelligent Agents 19

Basic actions and abstract plans are called atomic plans and are typically de-
noted by c. For technical convenience, plans are defined to have a list structure,
which means strictly speaking, that we can only use the sequential composition
operator to concatenate an atomic plan and a plan, rather than concatenating
two arbitrary plans. In the following, we will however also use the sequential
composition operator to concatenate arbitrary plans 7 and mo yielding 7y ; ms.
The operator should in this case be read as a function taking two plans that
have a list structure and yielding a new plan that also has this structure. The
plan m; will thus be the prefix of the resulting plan.

We use € to denote the empty plan, which is an empty list. The concatenation
of a plan 7 and the empty list is equal to m, i.e., €; 7 and 7; € are identified with
.

A plan and a belief base can together constitute a so-called configuration.
During computation or execution of the agent, the elements in a configuration
can change.

Definition 3. (configuration) Let X' be the set of belief bases and let IT be the
set of plans. Then IT x X is the set of configurations of a 3APL agent.

Plan revision rules consist of a head 7, and a body 7. Informally, an agent that
has a plan 7, can replace this plan by 7, when applying a plan revision rule of
this form.

Definition 4. (plan revision (PR) rules) The set of PR rules R is defined as
follows: R = {7y ~ mp | mp, 7 € I, T # €}.°
Take for example a plan a;b where a and b are basic actions, and a PR rule
a;b ~» c. The agent can then either execute the actions a and b one after the
other, or it can apply the PR rule yielding a new plan ¢, which can in turn be
executed. A plan p consisting of an abstract plan cannot be executed, but can
only be transformed using a procedure-like PR rule such as p ~~ a.

Below, we provide the definition of a 3APL agent. The function 7, taking a
basic action and a belief base and yielding a new belief base, is used to define
how belief bases are updated when a basic action is executed.

Definition 5. (8SAPL agent) A 3APL agent A is a tuple
(Rule, T) where Rule C R is a finite set of PR rules and 7 : (BasicActionxo) — o
is a partial function, expressing how belief bases are updated through basic ac-
tion execution.

2.2 Semantics

The semantics of a programming language can be defined as a function taking a
statement and a state, and yielding the set of states resulting from executing the

® In [4], PR rules were defined to have a guard, i.e., rules were of the form 7, | ¢ ~ .
For a rule to be applicable, the guard should then hold. For technical convenience
and because we want to focus on the plan revision aspect of these rules, we however
leave out the guard in this paper. The results could be extended for rules with a
guard.

20 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

initial statement in the initial state. In this way, a statement can be viewed as
a transformation function on states. In 3APL, plans can be seen as statements
and belief bases as states on which these plans operate. There are various ways
of defining a semantic function and in this paper we are concerned with the
so-called operational semantics (see for example De Bakker [17] for details on
this subject).

The operational semantics of a language is usually defined using transition
systems [21]. A transition system for a programming language consists of a set of
axioms and derivation rules for deriving transitions for this language. A transi-
tion is a transformation of one configuration into another and it corresponds to a
single computation step. Let A = (Rule, 7) be a 3APL agent and let BasicAction
be a set of basic actions. Below, we give the transition system Trans 4 for our sim-
plified 3APL language, which is based on the system given in [4]. This transition
system is specific to agent A.

There are two kinds of transitions, i.e., transitions describing the execution
of basic actions and those describing the application of a plan revision rule. The
transitions are labelled to denote the kind of transition. A basic action at the
head of a plan can be executed in a configuration if the function 7 is defined for
this action and the belief base in the configuration. The execution results in a
change of belief base as specified through 7 and the action is removed from the
plan.

Definition 6. (action execution) Let a € BasicAction.

T(a,0) =0’
(a;m,0) —epec (T,07)

A plan revision rule can be applied in a configuration if the head of the rule is
equal to a prefix of the plan in the configuration. The application of the rule
results in the revision of the plan, such that the prefix equal to the head of the
rule is replaced by the plan in the body of the rule. A rule a;b ~~ ¢ can for
example be applied to the plan a;b; ¢, yielding the plan ¢;c. The belief base is
not changed through plan revision.

Definition 7. (rule application) Let p :), ~> 7, € Rule.
(Th; T, 0) —app (Tp; T, 0)

In the sequel, it will be useful to have a function taking a PR rule and a plan,
and yielding the plan resulting from the application of the rule to this given
plan. Based on this function, we also define a function taking a set of PR rules
and a plan and yielding the set of rules applicable to this plan.

Definition 8. (rule application) Let R be the set of PR rules and let II be
the set of plans. Let p : 1, ~ m € R and 7,7’ € II. The partial function
apply : (R x IT) — II is then defined as follows.

;T if m=mp;7,
undefined otherwise.

apply(p)(m) = {

Dynamic Logic for Plan Revision in Intelligent Agents 21

The function applicable : (p(R) x IT) — p(R) yielding the set of rules appli-
cable to a certain plan, is then as follows: applicable(Rule,7) = {p € Rule |

apply(p)(m) is defined}.

Using the transition system, individual transitions can be derived for a 3APL
agent. These transitions can be put in sequel, yielding transition sequences. From
a transition sequence, one can obtain a computation sequence by removing the
plan component of all configurations occurring in the transition sequence. In the
following definitions, we formally define computation sequences and we specify
the function yielding these sequences, given an initial configuration.

Definition 9. (computation sequences) The set YT of finite computation se-
quences is defined as {o1,...,04,...,0, | 0; € 2,1 <i<n,n e N}

Definition 10. (function for calculating computation sequences) Let
x; € {exec,app} for 1 < i < m. The function CA : (IT x X) — o(XT) is
then as defined below.

C'A(’]T,O'):{O',...,O'm €2+|9: (m,0) =ay oo —a, (€,0m)

is a finite sequence of transitions in Trans4}.

Note that we only take into account successfully terminating transition se-
quences, i.e., those sequences ending in a configuration with an empty plan.
Using the function defined above, we can now define the operational semantics
of 3APL.

Definition 11. (operational semantics) Let x : p(XT) — ©(X) be a function
yielding the last elements of a set of finite computation sequences, which is
defined as follows: k(A) = {0y, | 01,...,0, € A}. The operational semantic
function OA : IT — (X — (X)) is defined as follows:

04(m)(0) = K(CA(, 7).

We will sometimes omit the superscript A from functions as defined above, for
reasons of presentation. The example below is used to explain the definition of
the operational semantics.

Ezample 1. Let A be an agent with PR rules {p;a ~ b,p ~ ¢}, where p is an
abstract plan and a,b,c are basic actions. Let o, be the belief base resulting
from the execution of a in o, i.e., T(a,0) = 04, let be o4 the belief resulting
from executing first @ and then b in o, etc.

Then C4(p;a)(o) = {(0,0,03), (0,0,0¢,0c4)}, which is based on the transi-
tion sequences (p; a, o) —app (b, 0) —ezec (€,05) and (p;a,0) —app (¢; A, 0) —ezec
(a,0c) —egee (€,0¢q). We thus have that OA(p;a)(o) = {04, Tca }-

22 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer
3 Dynamic Logic

In programming language research, an important area is the specification and
verification of programs. Program logics are designed to facilitate this process.
One such logic is dynamic logic [22,23], with which we are concerned in this
paper. In dynamic logic, programs are explicit syntactic constructs in the logic.
To be able to discuss the effect of the execution of a program 7 on the truth of
a formula ¢, the modal construct [7]¢ is used. This construct intuitively states
that in all states in which 7 halts, the formula ¢ holds.

Programs in general are constructed from atomic programs and composition
operators. An example of a composition operator is the sequential composition
operator (;), where the program 71; 7o intuitively means that 7 is executed first,
followed by the execution of 5. The semantics of such a compound program can
in general be determined by the semantics of the parts of which it is composed.
This compositionality property allows analysis by structural induction (see also
[24]), i.e., analysis of a compound statement by analysis of its parts. Analysis of
the sequential composition operator by structural induction can in dynamic logic
be expressed by the following formula, which is usually a validity: [71;72]¢ «—
[m1][m2]¢p. For 3APL plans on the contrary, this formula does not always hold.
This is due to the presence of PR rules.

We will informally explain this using the 3APL agent of example 1. As ex-
plained, the operational semantics of this agent, given initial plan p; a and initial
state o, is as follows: O(p;a)(0) = {0p, 0ca }. Now compare the result of first “ex-
ecuting”® p in o and then executing a in the resulting belief base, i.e., compare
the set O(a)(O(p)(o)). In this case, there is only one successfully terminating
transition sequence and it ends in o4, i.e., O(a)(O(p)(c)) = {0ea}. Now, if it
would be the case that o., | ¢ but o} = ¢, the formula [p; al¢ < [p][a]¢ would
not hold”.

Analysis of plans by structural induction in this way thus does not work for
3APL. In order to be able to prove correctness properties of 3APL programs
however, one can perhaps imagine that it is important to have some kind of
induction. As we will show in the sequel, the kind of induction that can be
used to reason about 3APL programs, is induction on the number of PR rule
applications in a transition sequence. We will introduce a dynamic logic for 3APL
based on this idea.

3.1 Syntax

In order to be able to do induction on the number of PR rule applications in
a transition sequence, we introduce so-called restricted plans. These are plans,

5 We will use the word “execution” in two ways. Firstly, as in this context, we will use
it to denote the execution of an arbitrary plan in the sense of going through several
transition of type exec or app, starting in a configuration with this plan and resulting
in some final configurations. Secondly, we will use it to refer to the execution of a
basic action in the sense of going through a transition of type exec.

7 In particular, the implication would not hold from right to left.

Dynamic Logic for Plan Revision in Intelligent Agents 23

annotated with a natural number®. Informally, if the restriction parameter of a
plan is n, the number of rule applications during execution of this plan cannot
exceed n.

Definition 12. (restricted plans) Let II be the language of plans and let N~ =
N U {—1}. Then, the language II, of restricted plans is defined as {7 [, | 7 €
II,ne N~}

Below, we define the language of dynamic logic in which properties of 3APL
agents can be expressed. In the logic, one can express properties of restricted
plans. As will become clear in the sequel, one can prove properties of the plan
of a 3APL agent by proving properties of restricted plans.

Definition 13. (plan revision dynamic logic (PRDL)) Let w[,€ II, be a re-
stricted plan. Then the language of dynamic logic LpgrpL with typical element ¢
is defined as follows:

— L C LproL,
— if ¢ € LproL, then [7[,]¢ € Lprot,
— if ¢,¢" € LprpL, then —¢ € LprpL and ¢ A ¢' € LprpL-

3.2 Semantics

In order to define the semantics of PRDL, we first define the semantics of re-
stricted plans. As for ordinary plans, we also define an operational semantics for
restricted plans. We do this by defining a function for calculating computation
sequences, given an initial restricted plan and a belief base.

Definition 14. (function for calculating computation sequences) Let
x; € {exec,app} for 1 < i < m. Let Ngpp(0) be a function yielding the number
of transitions of the form s; —4,, Si+1 in the sequence of transitions 6. The
function CA : (IT, x X) — p(X+) is then as defined below.

CATn,0) ={0,...,0m €EXT |0 =(1,0) =2, ... —u,, (6,0m)

is a finite sequence of transitions in Trans4 where 0 < Ng,,(0) < n}

As one can see in the definition above, the computation sequences CA(7[,,, o)
are based on transition sequences starting in configuration (m, o). The number
of rule applications in these transition sequences should be between 0 and n, in
contrast with the function C# of definition 10, in which there is no restriction
on this number.

Based on the function C*, we define the operational semantics of restricted
plans by taking the last elements of the computation sequences yielded by C:.

The set of belief bases is empty if the restriction parameter is equal to —1.

8 Or with the number —1. The number —1 is introduced for technical convenience and
it will become clear in the sequel why we need this.

24 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

Definition 15. (operational semantics) Let x be as in definition 11. The oper-
ational semantic function Q2 : IT, — (X — p(X)) is defined as follows:

- /<;(C;4(7r[mo)) if n >0,
oAl = { in=0

In the following proposition, we relate the operational semantics of plans and
the operational semantics of restricted plans.

Proposition 1.

U O:(nla)(o) = O(x)(0)

ne N
Proof. Immediate from definitions 15, 14, 11 and 10.

Using the operational semantics of restricted plans, we can now define the se-
mantics of the dynamic logic.

Definition 16. (semantics of PRDL) Let ¢ € £ be a propositional formula, let
¢,¢" € LprpL and let =, be the entailment relation defined for £ as usual. The
semantics =4 of LprpL is then as defined below.

cFEaAq Solkcq

0 Fa [7lal6 & Yo' € OA(rl)(0) : o' o &
oEATY S oA

cEAINY SolEspand oy @

As 0;4 is defined in terms of agent A, so is the semantics of LprpL. We use
the subscript A to indicate this. Let Rule C R be a finite set of PR rules. If
VT ,0:0 = (Rue,7) > We Write FRrule ¢.

In the dynamic logic PRDL, one can express properties of restricted plans,
rather than of ordinary 3APL plans. The operational semantics of ordinary plans
O and of restricted plans O, are however related (proposition 1). As the seman-
tics of the construct [[,]o is defined in terms of O,, we can use this construct
to specify properties of 3APL plans, as shown by the following corollary.

Corollary 1.
VneN:o q [rla)o & Vo' € OA(n)(0): 0’ Ea b

Proof. Immediate from proposition 1 and definition 16.

4 The Axiom System

In order to prove properties of restricted plans, we propose a deductive system
for PRDL in this section. Rather than proving properties of restricted plans,
the aim is however to prove properties of 3APL plans. We thus want to prove
properties of the form Vn € N : [r[,]®, as these are directly related to 3APL by
corollary 1. The idea now is, that these properties can be proven by induction
on n. We will explain this in more detail after introducing the axiom system for
restricted plans.

Dynamic Logic for Plan Revision in Intelligent Agents 25

Definition 17. (azxiom system (ASgrue)) Let BasicAction be a set of basic ac-
tions, AbstractPlan be a set of abstract plans and Rule C R be a finite set of
PR rules. Let a € BasicAction, let p € AbstractPlan, let ¢ € (BasicAction U
AbstractPlan) and let p range over applicable(Rule, ¢; 7). The following are then
the axioms of the system ASgye.

(PRDL1) [r]_1]¢

(PRDL2) [plo]o

(PRDL3) [e]n]¢ < if0<n
(PRDL4) [c;7ln]o [c[o][ﬂn]q[) AN, lapply(p, c;m)ln—1]¢ 0 <n
(PL) axioms for propositional logic

(PDL) [xlnl(¢ = &) = ([7ln]¢ — [7ln]¢")

The following are the rules of the system ASgye.

(GEN)
¢
[7lnlo
(MP)
o1, ¢1 — @2
P2

As the axiom system is relative to a given set of PR rules Rule, we will use the
notation Fryle ¢ to specify that ¢ is derivable in the system ASgye above.

The idea is that properties of the form Vn € N : Fryje [7],]¢ can be proven by
induction on n as follows. If we can prove [7[g]¢ and Vn € N : ([7[,]¢ Frute [TTn+1
|¢), we can conclude the desired property. These premises should be proven using
the axiom system above. Consider for example an agent with a PR rule a ~ a;a
and assume that 7 is defined such that [a[¢]é. One can then prove Vn : [a],]¢
by proving [a[,]® Frule [a]n41]¢, for arbitrary n.

We will now explain the PRDL axioms of the system. The other axioms and
the rules are standard for propositional dynamic logic (PDL) [22]. We start by
explaining the most interesting axiom: (PRDL4). We first observe that there are
two types of transitions that can be derived for a 3APL agent: action execution
and rule application (see definitions 6 and 7). Consider a configuration (a;m, o)
where a is a basic action. Then during computation, possible next configurations
are (m,0’)? (action execution) and (apply(p,a;), o) (rule application) where p
ranges over the applicable rules, i.e., applicable(Rule, a; m)'°. We can thus analyze
the plan a;7 by analyzing 7 after the execution of a, and the plans resulting
from applying a rule, i.e., apply(p, a;m)*!. The execution of an action can be

¥ Assuming that 7 (a,0) = o’

10 See definition 8 for the definitions of the functions apply and applicable.

11 Note that one could say we analyze a plan a; 7 partly by structural induction, as it
is partly analyzed in terms of a and .

26 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

represented by the number 0 as restriction parameter, yielding the first term of
the right-hand side of (PRDL4): [a]o][7].]¢'2. The second term is a conjunction
of [apply(p, c;) [n—1]¢ over all applicable rules p. The restriction parameter is
n—1 as we have “used” one of our n permitted rule applications. The first three
axioms represent basic properties of restricted plans. (PRDL1) can be used to
eliminate the second term on the right-hand side of axiom (PRDL4), if the left-
hand side is [¢;7[g]¢. (PRDL2) can be used to eliminate the first term on the
right-hand side of (PRDL4), if ¢ is an abstract plan. As abstract plans can only
be transformed through rule application, there will be no resulting states if the
restriction parameter of the abstract plan is 0, i.e., if no rule applications are
allowed. (PRDL3) states that if ¢ is to hold after execution of the empty plan, it
should hold “now”. It can be used to derive properties of an atomic plan ¢, by
using axiom (PRDL4) with the plan ¢;e.

Ezample 2. Let A be an agent with one PR rule, i.e., Rule = {a;b ~~ ¢} and let
T be such that [alo]®, [blo]¢ and [c[o]d. We now want to prove that Vn : [a; b,]¢.
We have [a;blg]¢ by using that this is equivalent to [a[o][blo]¢ by proposition
3 (section 4.1). The latter formula can be derived by applying (GEN) to [blo]¢.
We prove Vn € N : ([a;b[n]¢ Frue [@;b[nt1]¢) by taking an arbitrary n and
proving that [a;0[,]® Frule [@;0]n41]¢. Using (PRDL4) and (PRDL3), we have
the following equivalences. In order to apply (PRDL4) to the conjunct [¢[,—1]¢,
n has to be greater than 0. This is however not a problem, as the result was
proven separately for n = 0.

[a; brn](b e [afo] [brn]¢ A an](b
< [afo][blo][eln]¢ A [clo][eln—1]¢
< [alo][blo]¢ A l[clolo

Similarly, we have the following equivalences for [a; b[,,11]®, yielding the desired

result.
[a; bl 1] <
< [alo][blo][€ln+1]@ A [clo]eln]@

4.1 Soundness and Completeness
The axiom system of definition 17 is sound.

Theorem 1. (soundness) Let ¢ € LprpL. Let Rule € R be an arbitrary finite
set of PR rules. Then the axiom system ASgyle is sound, i.e.:

I_Rule ¢ =):Rule ¢

Proof. We prove soundness of the PRDL axioms of the system ASgye.
(PRDL1) The proof is through observing that O,(w|_1)(c) = 0 by definition 15.

12 Tn our explanation, we consider the case where ¢ is a basic action, but the axiom
holds also for abstract plans.

Dynamic Logic for Plan Revision in Intelligent Agents 27

(PRDL2) The proof is analogous to the proof of axiom (PRDL1), with p for =
and 0 for —1 and using definition 6 to derive that O (p[o)(o) = 0.
(PRDL3) The proof is through observing that «(C,(e[,,0)) = {o} by definition
14.
(PRDL4) Let 7 € II be an arbitrary plan and ¢ € LprpL be an arbitrary PRDL
formula.
To prove: V7,0 : 0 ey (51l = [elollm 1o A A, lapply(p.cim) Lui]o,
ie.

VT,0:0 ERueT) [6;Tn]¢ < VT ,0: 0 ERue1) [clo][T[n]¢ and

VT, 00 Eruet) \lapply(p, ¢;7)ln-1]¢.
P

Let 0 € X be an arbitrary belief base and let 7 be an arbitrary belief update
function. Assume ¢ € BasicAction and furthermore assume that (¢; 7, 0) —ezecute
(m,01) is a transition in Trans 4, i.e., K(CA(clo,)) = {01} by definition 14. Let
p range over applicable(Rule, ¢;). Now, observe the following by definition 14:

R(C (e, 0)) = K(CA (T, 1)) U w(CrH (apply(p, i m) a1, 0)). (1)
P
If ¢ € AbstractPlan or if a transition of the form (¢;m, 0) —czecute (7, 01) is not
derivable, the first term of the right-hand side of (1) is empty.

(=) Assume o =Ryl [¢; T[], i.e., by definition 16 Yo/ € O (¢; [,) : 0’ ERule
o, i.e., by definition 15:

Vo' € k(CA(¢; T, 0)) 1 0 ERule @ (2)

To prove: (A) o [=rule [clo][]n]¢ and (B) o [Frue A lapply(p, ¢; 7)1n-1]¢.
(A) If ¢ € AbstractPlan or if a transition of the form {(¢;7,0) —cpecute (T, 01) is

not derivable, the desired result follows immediately from axiom (PRDL2) or an
analogous proposition for non executable basic actions. If ¢ € BasicAction, we
have the following from definitions 16 and 15.

a |:Rule[][]¢<:>VU € OA(05) o |:Ru|e[n}
& Vo' € OA(clo,0) : Yo' € OA(nln,0') : 0" FERule ¢
& Vo' € k(C(clo,0)) : Vo' € K(Cf(s ')) 10" ERule ¢
s Vo' € n(C;“(W[n,m)) 10" FRule ¢
(3)

From 1, we have that #(CA (7], 01)) C K(CA(c; 7ln,0)). From this and assump-
tion (2), we can now conclude the desired result (3).

(B) Let ¢ € (BasicAction U AbstractPlan) and let p € applicable(Rule, ¢; 7). Then
we want to prove o Egrule [apply(p, ¢;) [n—1]¢. From definitions 16 and 15, we
have the following.

o Erule [apply(p, ¢;m)[n—1]¢ < Vo' € O apply(p, c;m)ln-1,0) : 0’ ERrule ¢
& Yo' € k(C A apply(p, ;™) n-1,0)) : &' Frule ¢

(4)

28 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

From 1, we have that x(CA(apply(p, ¢; ™) [n-1,0)) C k(CA(c;Tln,a)). From this
and assumption (2), we can now conclude the desired result (4).

(4

(<) Assume o [=ryke [clo][7[4]¢ and o [=rue A, lapply(p, ¢;T)n-1]9, ie., Yo' €
n(ff‘(wrmol)) : 0" Erie & (3) and Vo' € k(CA(apply(p,c;)ln-1,)) : o' Erue
o (4).
To prove: o [=rue [¢;7 [n]@, ie., Yo' € k(CA(c;T [n,0)) @ 0 FErue ¢ (2). If
¢ € AbstractPlan or if a transition of the form (¢;7,0) —cpecute (7, 01) is not
derivable, we have that k(CA(c;7[n,0)) = U, k(CA(apply(p, ;) [n_1,0)) (1).
From this and the assumption, we have the desired result.

If ¢ € BasicAction and a transition of the form (¢;m, o) —crecute (T,01) is
derivable, we have (1). From this and the assumption, we again have the desired
result.

In order to prove completeness of the axiom system, we first prove proposition
2, which says that any formula from Lprpp can be rewritten into an equivalent
formula where all restriction parameters are 0. This proposition is proven by
induction on the size of formulas. The size of a formula is defined by means of
the function size : LprpL — NB. This function takes a formula from Lprp, and
yields a triple (x, y, z), where x roughly corresponds to the sum of the restriction
parameters occurring in the formula, y roughly corresponds to the sum of the
length of plans in the formula and z is the length of the formula.

Definition 18. (size) Let the following be a lexicographic ordering on tuples
(x,y,2) € N3:
(T1,91,21) < (T2,Y2, 22) iff 21 < @3 o1
(21 =9 and y1 < y2) or (r1 = 22 and y; = yo and 21 < 29).
Let max be a function yielding the maximum of two tuples from N® and let f
and s respectively be functions yielding the first and second element of a tuple.

Let [be a function yielding the number of symbols of a syntactic entity and let
g € L. The function size : LprpL — N? is then as defined below.

size(q) = (0,0,1(q

size([ml] {<n+f size(9)), l(m) + (szze((b)) U([rln)®)) ifn>0
(f(size(d)), s(size(d)), l([7]n]d)) otherwise

ize(od) = el nse o ot

szze(gbAQS’) (f(max(size(9), size(¢"))), s(maz(size(d), size(d'))), (¢ A ¢'))

In the proof of proposition 2, we use the following lemma. The first clause spec-
ifies that the right-hand side of axiom (PRDL4) is smaller than the left-hand
side. This axiom will usually be used by applying it from left to right to prove a
formula such as [r[,]¢. Intuitively, the fact that the formula will get “smaller”
as specified through the function size, suggests convergence of the deduction
process.

Lemma 1. Let ¢ € LprpL, let ¢ € (BasicAction U AbstractPlan), let p range
over applicable(Rule, ¢;) and let n > 0. The following then holds:

Dynamic Logic for Plan Revision in Intelligent Agents 29

L. size([clo][m[n]¢ A A lapply(p, ¢;) Tn-1]9) < size([c;wln]¢),
2. size(9) < size(p A ¢') and size(¢') < size(d A ¢').

Proof. The proof is simply by applying definition 18.

Proposition 2. Any formula ¢ € LprpL can be rewritten into an equivalent
formula ¢pp. where all restriction parameters are 0, i.e.:

V¢ € LeroL : IoppL € LeroL : size(dppL) = (0,0,1(¢ppL)) and Frue ¢ < dppL-

Proof. The fact that a formula ¢ has the property that it can be rewritten as
specified in the proposition, will be denoted by PDL(¢) for reasons that will
become clear in the sequel. The proof is by induction on size(¢).

—90=q
size(q) = (0,0,1(q)) and let gppL = ¢, then PDL(q).
— ¢ =[rl.]¢

If n = —1, we have that [r],]|¢’ is equivalent with T (PRDL1). As PDL(T),
we also have PDL([r],]¢’) in this case.

Let n = 0. We then have that size([n],]¢") = (f(size(¢")), s(size(¢)),
I([rln])¢")) is greater than size(¢') = (f(size(¢')), s(size(¢')),1(¢')). By in-
duction, we then have PDL(¢'), i.e., ¢’ can be rewritten into an equivalent
formula ¢pp, , such that size(dpp) = (0,0,1(dppL)). As size([T],]dppL) =
(0,0,1([7[n]PppL)), we have PDL([7[,])¢pp,) and therefore PDL([x[,]¢’).

Let n > 0. Let m = e. By lemma 1, we have size(¢') < size([e[,]¢’).
Therefore, by induction, PDL(¢’). As [e],]¢’ is equivalent with ¢’ by axiom
(PRDL3), we also have PDL([e[,]¢"). Now let m = ¢; 7" and let L = [¢;7'[]
and R = [c[o][7'[]@" A /\p[apply(p, ¢;) n-1]¢’. By lemma 1, we have that
size(R) < size(L). Therefore, by induction, we have PDL(R). As R and L
are equivalent by axiom (PRDL4), we also have PDL(L), yielding the desired
result.

~ =g

We have that size(—¢') = (f(size(¢')), s(size(@')),l(—¢")), which is greater
than size(¢’). By induction, we thus have PDL(¢') and
size(dpp) = (0,0,1(¢pp,). Then, size(~¢pp) = (0,0,I(~¢pp,)) and thus
PDL(—¢pp,) and therefore PDL(—¢’).

By lemma 1, we have size(¢') < size(¢' A @) and size(¢”) < size(¢’ A ¢p").
Therefore, by induction, PDL(¢’) and PDL(¢"”) and therefore size(¢pp,) =
(0,0,1(¢ppL)) and size(¢pp) = (0,0,1(¢pp,)). Then, size(¢pp A dpp) =
(0,0, (e, A dlior)) and therefore size((d' A6)por) = (0,0, (& A&)eor))
and we can conclude PDL((¢' A ¢”)ppL) and thus PDL(¢’ A ¢").

Although structural induction is not possible for plans in general, it is possible
if we only consider action execution, i.e., if the restriction parameter is 0. This is
specified in the following proposition, from which we can conclude that a formula
¢ with size(¢) = (0,0,1(¢)) satisfies all standard PDL properties.

30 M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

Proposition 3. (sequential composition) Let Rule C R be a finite set of PR
rules. The following is then derivable in the axiom system ASgye.

FRute [15 m2[0]¢ < [m1]o][m2l0]@

Proof. The proof is through repeated application of axiom (PRDL4), first from
left to right and then from right to left (also using axiom (PRDL1) to eliminate
the rule application part of the axiom).

Theorem 2. (completeness) Let ¢ € LprpL and let Rule € R be a finite set of
PR rules. Then the axiom system ASgye is complete, i.e.:

FRule @ = FRule ¢-

Proof. Let ¢ € LprpL. By proposition 2 we have that a formula ¢pp| exists such
that Fryle ¢ < ¢ppL and size(gppL) = (0,0, (dppL)) and therefore by soundness
of ASgruyle also FErule ¢ < ¢ppL. Let ¢ppL be a formula with these properties.

FRule ® < FRule OPDL (FRule ¢ < ¢ppDL)

= FRule ®PDL (completeness of PDL)
& FRule @ (FRrule & < ¢pDL)

The second step in this proof needs some justification. The general idea is, that
all PDL axioms and rules are applicable to a formula ¢pp_ and moreover, these
axioms and rules are contained in our axiom system ASgye. As PDL is complete,
we have =Rryle ®pbL = FRule ¢PppL. There are however some subtleties to be
considered, as our action language is not exactly the same as the action language
of PDL, nor is it a subset (at first sight).

In particular, the action language of PDL does not contain abstract plans or
the empty action e. These are axiomatized in the system ASgye and the question
is, how these axioms relate to the axiom system for PDL. It turns out, that the
semantics of p[y and €y (or €[,, for that matter) correspond respectively to
the special PDL actions fail (no resulting states if executed) and skip (the
identity relation). These actions are respectively defined as 07 and 17. Filling
in these actions in the axiom for test ([?]¢ < (¢ — ¢)), we get the following,
corresponding exactly with the axioms (PRDL2) and (PRDL3).

[07]¢ < (0 — ¢) < [07]¢ & [fail]e
17— (1 — ¢) & [17]¢p «— ¢ & [skipl]o < ¢

Our axiom system is complete for formulas ¢pp, because it contains the PDL
axioms and rules that are applicable to these formulas, that is, the axiom for
sequential composition, the axioms for fail and skip as stated above, the axiom
for distribution of box over implication and the rules (MP) and (GEN). The
axiom for sequential composition is not explicitly contained in ASgye, but is
derivable for formulas ¢ppL by proposition 3. Axiom (PRDL3), i.e., the more
general version of [e[g]¢ < ¢, is needed in the proof of proposition 2, which is
used elsewhere in this completeness proof.

Dynamic Logic for Plan Revision in Intelligent Agents 31

5 Conclusion and Future Research

In this paper, we presented a dynamic logic for reasoning about 3APL agents,
tailored to handle the plan revision aspect of the language. As we argued, 3APL
plans cannot be analyzed by structural induction. Instead, we proposed a logic
of restricted plans, which should be used to prove properties of 3APL plans by
doing induction on the restriction parameter.

Being able to do structural induction is usually considered an essential prop-
erty of programs in order to reason about them. As 3APL plans lack this prop-
erty, it is not at all obvious that it should be possible to reason about them,
especially using a clean logic with sound and complete axiomatization. The fact
that we succeeded in providing such a logic, thus at least demonstrates this
possibility.

We did some preliminary experiments in actually using the logic to prove
properties of certain 3APL agents. More research is however needed to establish
the practical usefulness of the logic to prove properties of 3APL agents and the
possibility to do for example automated theorem proving. In this light, incorpo-
ration of interaction with an environment in the semantics is also an important
issue for future research.

References

1. Wooldridge, M.: Agent-based software engineering. IEEE Proceedings Software
Engineering 144 (1997) 26-37

2. Rash, J., Rouff, C., Truszkowski, W., Gordon, D., Hinchey, M., eds.: Formal Ap-
proaches to Agent-Based Systems (Proceedings of FAABS’01). Volume 1871 of
LNATI, Berlin, Springer (2001)

3. Hinchey, M., Rash, J., Truszkowski, W., Rouff, C., Gordon-Spears, D., eds.: Formal
Approaches to Agent-Based Systems (Proceedings of FAABS’02). Volume 2699 of
LNATI, Berlin, Springer (2003)

4. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.Ch.: Agent program-
ming in 3APL. Int. J. of Autonomous Agents and Multi-Agent Systems 2 (1999)
357-401

5. van Riemsdijk, M.B., van der Hoek, W., Meyer, J.J.Ch.: Agent programming in
Dribble: from beliefs to goals using plans. In: Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’03), Melbourne (2003) 393-400

6. Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.J.Ch.: A programming
language for cognitive agents: goal directed 3APL. In: Programming multia-
gent systems, First International Workshop (ProMAS’03). Volume 3067 of LNAIL
Springer, Berlin (2004) 111-130

7. Bratman, M.E.: Intention, plans, and practical reason. Harvard University Press,
Massachusetts (1987)

8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artificial
Intelligence 42 (1990) 213-261

32

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M.B. van Riemsdijk, F.S. de Boer, and J.-J. Ch. Meyer

Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In
Allen, J., Fikes, R., Sandewall, E., eds.: Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
Morgan Kaufmann (1991) 473-484

van der Hoek, W., van Linder, B., Meyer, J.J.Ch.: An integrated modal approach
to rational agents. In Wooldridge, M., Rao, A.S., eds.: Foundations of Rational
Agency. Applied Logic Series 14. Kluwer, Dordrecht (1998) 133-168

Rao, A.S.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Lan-
guage. In van der Velde, W., Perram, J., eds.: Agents Breaking Away (LNAI 1038),
Springer-Verlag (1996) 42-55

Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60 (1993) 51-92
Giacomo, G.d., Lespérance, Y., Levesque, H.: ConGolog, a Concurrent Program-
ming Language Based on the Situation Calculus. Artificial Intelligence 121 (2000)
109-169

Evertsz, R., Fletcher, M., Jones, R., Jarvis, J., Brusey, J., Dance, S.: Implementing
Industrial Multi-Agent Systems Using JACK™. In: Proceedings of the first interna-
tional workshop on programming multiagent systems (ProMAS’03). Volume 3067
of LNAI Springer, Berlin (2004) 18-49

Bordini, R.H., Fisher, M., Pardavila, C., Wooldridge, M.: Model checking AgentS-
peak. In: Proceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’03), Melbourne (2003) 409-416
Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.Ch.: A programming
logic for part of the agent language 3APL. In: Proceedings of the First Goddard
Workshop on Formal Approaches to Agent-Based Systems (FAABS’00). (2000)
de Bakker, J.: Mathematical Theory of Program Correctness. Series in Computer
Science. Prentice-Hall International, London (1980)

van Riemsdijk, M.B., Meyer, J.J.Ch., de Boer, F.S.: Semantics of plan revision
in intelligent agents. In Rattray, C., Maharaj, S., Shankland, C., eds.: Proceed-
ings of the 10th International Conference on Algebraic Methodology And Software
Technology (AMASTO04). Volume 3116 of LNCS, Springer-Verlag (2004) 426-442
van Riemsdijk, M.B., Meyer, J.J.Ch., de Boer, F.S.: Semantics of plan revision in
intelligent agents. Technical report, Utrecht University, Institute of Information
and Computing Sciences (2003) UU-CS-2004-002.

Hayashi, H., Cho, K., Ohsuga, A.: A new HTN planning framework for agents in
dynamic environments. In: Proceedings of the Fourth International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA-IV). (2003) 108-133
Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

Harel, D.: First-Order Dynamic Logic. Lectures Notes in Computer Science 68.
Springer, Berlin (1979)

Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge,
Massachusetts and London, England (2000)

van Emde Boas, P.: The connection between modal logic and algorithmic logics. In:
Mathematical foundations of computer science 1978. Volume 64 of LNCS. Springer,
Berlin (1978) 1-15

Contextual Taxonomies

Davide Grossi, Frank Dignum, and John-Jules Ch. Meyer

Utrecht University,
The Netherlands
{davide, dignum, jj}@cs.uu.nl

Abstract. We provide a formal characterization of a notion of contex-
tual taxonomy, that is to say, a taxonomy holding only with respect to a
specific context. To this aim, a new proposal for dealing with “contexts
as abstract mathematical entities” is set forth, which is geared toward
solving some problems arising in the area of normative system specifica-
tions for modeling multi-agent systems. Contexts are interpreted as sets
of description logic models for different languages, and a number of op-
erations on contexts are defined. Using this framework, a simple scenario
taken from the legal domain is modeled, and a formal account of the so
called open-texture of legal terms is provided characterizing the notions
of “core” and “penumbra” of the meaning of a concept.

1 Introduction

The motivation of this work lies in problems stemming from the domain of
normative system specifications for modeling multi-agent systems ([1,2]). In |3,
4, 5] contexts have been advocated to play a central role in the specification of
complex normative systems. The notion of context has obtained attention in Al
researches since the seminal work [6], and much work has been carried out with
regard to the logical analysis of this notion (see [7, 8] for an overview). With this
work, we intend to pursue this research line providing a logical framework for
dealing with a conception of context specifically derived from the aforementioned
application domain. We nevertheless deem that the formal analysis we are going
to present may give valuable insights for understanding contexts in general, also
outside our specific domain of interest.

In general, the purpose of the present work is to propose a framework for
grounding a new formal semantics of expressions such as: “A counts as B ([9])
in institution ¢”, or “B supervenes A in institution ¢” ([10]), or “A conventionally
generates B in institution ¢” ([11]), or “A translates (means) B in institution
¢” ([5]). These expressions, known in legal theory as constitutive rules, will be
interpreted essentially as contextualized subsumption relations establishing tax-
onomies which hold only with respect to a specific (institutional) context. We
came to a notion of contextual taxonomy through the analysis of some well known
problems of underspecification, or more technically open-texture ([12]), typical of
legal terminologies. These vagueness-related issues constitute, more concretely,

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 33-51, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

34 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

the direct target of the work. We quote here an excerpt from [13] neatly exposing
this type of problems.

[Suppose a] legal rule forbids you to take a vehicle into the public park.
Plainly this forbids an automobile, but what about bicycles, roller skates,
toy automobiles? What about airplanes? Are these, as we say, to be called
“vehicles” for the purpose of the rule or not? If we are to communicate
with each other at all, and if, as in the most elementary form of law, we
are to express our intentions that a certain type of behavior be regulated
by rules, then the general words we use like “vehicle” in the case I consider
must have some standard instance in which no doubts are felt about its
application. There must be a core of settled meaning, but there will be,
as well, a penumbra of debatable cases in which words are neither obvi-
ously applicable nor obviously ruled out. [...] We may call the problems
which arise outside the hard core of standard instances or settled meaning
“problems of the penumbra”; they are always with us whether in relation
to such trivial things as the regulation of the use of the public park or in
relation to the multidimensional generalities of a constitution.

Given a general (regional) rule not allowing vehicles within public parks, there
might be a municipality allowing bicycles in its parks, and instead another one
not allowing them in. What counts as a vehicle according to the first municipal-
ity, and what counts as a vehicle according to the second one then? This type
of problems has been extensively approached especially from the perspective
of the formalization of defeasible reasoning: the regional rule “all vehicles are
banned from public parks” is defeated by the regulation of the first municipality
stating that “all vehicles that are bicycles are allowed in the park” and estab-
lishing thus an ezception to the general directive. The formalization of norms via
non-monotonic techniques (see [14] for an overview) emphasizes the existence of
exceptions to norms while understanding abstract terms in the standard way (all
instances of bicycles are always vehicles). It has also been proposed to view the
inclusion rules themselves as defaults: “normally, if something is a bicycle, then
it is a vehicle” (for example [15,5]). We deem these approaches, despite being
effective in capturing the reasoning patterns involved in these scenarios, to be
not adequate for analyzing problems related with the meaning of the terms that
trigger those reasoning patterns. Those reasoning patterns are defeasible because
the meaning of the terms involved is not definite, it is vague, it is -and this is
the thesis we hold here- context dependent'. We propose therefore to analyze
these “problems of the penumbra” in terms of the notion of context: according to
(in the context of) the public parks regulation of the first municipality bicycles
are not vehicles, according to (in the context of) the public parks regulation of
the second one bicycles are vehicles. This reading will be interpreted as follows:
“the subsumption of the concept bicycle under the concept vehicle holds in
the context of the first municipality, but not in the context of the second one”.

! The issue of the relationship between contextuality and defeasibility has been raised
also in [7].

Contextual Taxonomies 35

A defeasible reasoning analysis leads to a quite different reading, which flattens
the meaning of concepts and handles its variations by means of the notion of ex-
ception: “every exceptional instance of bicycle is not an instance of vehicle”.
Bringing contexts into play will instead allow for a neat characterization of the
notions of “core” and “penumbra” of the meaning of a concept, a characteriza-
tion which is not obtainable via the use of a notion of exception.

The remainder of this paper is structured in accordance with the following
outline. In Section 2 we will introduce the notion of contezrtual taxonomymaking
use of a concrete scenario; in Section 3 we will provide a formal framework based
on a very simple type of description logic which accounts for this concept; in
Section 4 we will provide a formalization of the scenario introduced, and we
will formally characterize the notions of conceptual “core” and “penumbra’; in
Section 5 we will discuss relations with other work; finally, in Section 6, some
conclusive remarks are made.

2 Contextualizing Taxonomies

Let us now depict a simple scenario in order to state in clear terms the example
used in the introduction.

Ezample 1. (The public park scenario) In the regulation governing access
to public parks in region R it is stated that: “vehicles are not allowed within
public parks”. In this regulation no mention is made of (possible) subconcepts
of the concept vehicle, e.g., cars, bicycles, which may help in identifying an
instance of vehicle. In municipal regulations subordinated to this regional one,
specific subconcepts are instead handled. In municipality M1, the following rule
holds: “bicycles are allowed to access public parks”. In M2 instead, it holds that:
“bicycles are not allowed to access public parks”. In both M1 and M2 it holds
that: “cars are not allowed in public parks”.

In this scenario the concept of vehicle is clearly open-textured. Instances of
car (w.r.t. the taxonomies presupposed by M1 and M2) are “core” instances
of vehicle, while instances of bicycle lay in the “penumbra” of vehicle. We
will constantly refer back to this example in the remaining of the work. In fact,
our first aim will be to provide a formal framework able to account for scenarios
formally analogous to the aforementioned one?.

Since the statement about the need for addressing “contexts as abstract
mathematical entities” in [6], many formalizations of the notion have been pro-
posed (see [7] or [8] for an overview). Our proposal pursues the line of developing
a semantic approach to the notion of context according to what was originally
presented in [16]. In that work contexts are formalized as sets of first order logic
models. They are then connected via a relation called compatibility relation,

2 Note that this scenario hides a typical form of contextual reasoning called “catego-
rization” ([8]), or “perspective” ([7]).

36 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

which requires the sets of models constituting the different contexts to satisfy
sets of domain specific inter-contextual inference rules (bridge rules). This theory
has been variously used in work on specification of agent architectures ([17, 18])
where the stress lies in how contexts influence each other at a proof-theoretical
level rather than at a semantical one (what can can be inferred in this context,
given that something holds in some other context?). We follow the basic intuition
of understanding contexts as sets of models. Nevertheless, since we are mainly
interested in taxonomies, much simpler models will be used here?. Moreover, we
will partly depart from the proposal in [16] trying to characterize also a set of
operations meaningfully definable on contexts. In fact, what we are interested in
is also an articulate characterization of the interplay between contexts: how can
contexts be joined, abstracted, etc. Instead of focusing on bridge rules, which
have to be introduced outside and separately from the contexts, we will define
some operations on contexts such that all possible compatibility relations will
be generated by the semantics of the contexts alone. This will provide intrinsic
boundaries within which other bridge rules may later be defined.

To summarize, we will expose an approach to contexts which is driven by
intuitions stemming from the analysis of normative terminologies, and which is
based on description logic semantics.

3 A Formal Framework

The main requirements of the formal framework that we will develop are the
following ones.

1. It should enable the possibility of expressing lexical differences. A much ac-
knowledged characteristic of contextual reasoning is, indeed, that contexts
should be specified on different languages ([19,20,21,22]). The context of
the national regulation about access to public parks should obviously be
specified on a vocabulary that radically differs from the vocabulary used
to specify the context of regulations about, for instance, immigration law:
public park regulations do not talk about immigrants. Moreover, in Exam-
ple 1, we observed that more concrete contexts make actually use of richer
vocabularies: talking about vehicles comes down to talk about cars, bicycles,
etc. In a nutshell, different contexts mean different ontologies and therefore
different languages.

2. Tt should provide a formal semantics (as general as possible) for contextual-
ized subsumption expressions, that is to say, for contextual taxonomies.

3. It should enable the possibility of describing operations between contexts.

Following these essential guidelines, a language and a semantics are introduced
in what follows. The language will make use of part of description logic syntax,
as regards the concept constructs, and will make use of a set of operators aimed
at capturing the interplay of contexts. In particular, we will introduce:

3 Basically models for description logic languages without roles. See Section 3.

Contextual Taxonomies 37

— A contextual conjunction operator. Intuitively, it will yield a composition
of contexts: the contexts “dinosaurs” and “contemporary reptiles” can be
intersected on a language talking about crocodiles generating a common less
general context like “crocodiles”.

— A contextual disjunction operator. Intuitively, it will yield a union of con-
texts: the contexts “viruses” and “bacterias” can be unified on a language
talking about microorganisms generating a more general context like “viral
or bacterial microorganisms”.

— A contextual negation operator. Intuitively, it will yield the context obtained
via subtraction of the context negated: the negation of the context “viruses”
on the language talking about microorganisms generates a context like “non
viral microorganisms”.

— A contextual abstraction operator. Intuitively, it will yield the context con-
sisting of some information extracted from the context to which the ab-
straction is applied: the context “crocodiles”, for instance, can be obtained
via abstraction of the context “reptiles” on the language talking only about
crocodiles. In other words, the operator prunes the information contained in
the context “reptiles” keeping only what is expressible in the language which
talks about crocodiles and abstracting from the rest.

Finally, also maximum and minimum contexts will be introduced: these will rep-
resent the most general, and respectively the less general, contexts on a language.
As it appears from this list of examples, operators will need to be indexed with
the language where the operation they denote takes place. The point is that
contexts always belong to a language, and so do operations on them*.

These intuitions about the semantics of context operators will be clarified
and made more rigorous in Section 3.2 where the semantics of the framework
will be presented, and in Section 4.1 where an example will be formalized.

3.1 Language

The language we are interested in defining is nothing but a formal metalanguage
for talking about sets of subsumption relations, i.e., what in description logic are
called terminological boxes (TBoxes). In fact, we consider only TBoxes specified
on very simple languages containing just atomic concepts and boolean opera-
tors®. We decided to keep the syntax of these languages poor mainly for two
reasons: firstly, because the use of boolean concept descriptions alone is enough

4 Note that indexes might be avoided considering operators interpreted on operations
taking place on one selected language, like the largest common language of the
languages of the two contexts. However, this would result in a lack of expressivity
that we prefer to avoid for the moment.

5 In fact, we are going to extend the language of propositional logic. Nevertheless, the
semantics we are going to use in Section 3.2 is not the semantics of propositional
logic, and it is instead of a description logic kind. For this reason we deem instructive
to refer to these simple languages also as description logic languages of the type ALC
([23]) but with an empty set of roles.

38 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

to model the scenario depicted in Example 1; secondly, because this is still a
preliminary proposal with which we aim to show how contextual reasoning and
reasoning about vague notions are amenable to being handled on the basis of
computationally appealing logics. On this basis it will be natural, in future, to
consider also richer languages.

The alphabet of the language £L°7 (language for contextual taxonomies) con-
tains therefore the alphabets of a family of languages {£;}o<i<n. This family
is built on the alphabet of a given “global” language £ which contains all the
terms occurring in the elements of the family. Moreover, we take {£;}o<i<n toO
be such that, for each non-empty subset of terms of the language L, there exist
a L; which is built on that set and belongs to the family. Each £; contains a
non-empty finite set A; of atomic concepts (A), the zeroary operators L (bottom
concept) and T (top concept), the unary operator —, and the binary operators
M and LS.

Besides, the alphabet of £L¢7 contains a finite set of context identifiers ¢, two
families of zeroary operators {L;}o<i<, (minimum contexts) and {T;}o<i<n
(maximum contexts), two families of unary operators {abs; }o<i<n (context ab-
straction operators) and {—;}o<i<n (context negation operators), two families
of binary operators {A;}o<i<n (context conjunction operators) and {Y;}o<i<n
(context disjunction operators), one context relation symbol < (context ¢; “is at
most as general as” context cz) and a contextual subsumption relation symbol
“ C .7 (within context ¢, concept A; is a subconcept of concept As),
finally, the sentential connectives ~ (negation) and A (conjunction)”. Thus, the
set = of context constructs (£) is defined through the following BNF:

Eu=c| Li| Ti| mi&labs; £]& Ai&a| & Yo

Concepts and concept constructors are then defined in the usual way. The set I'
of concept descriptions (7) is defined through the following BNF:

ye= AL Ty My [nUr
The set A of assertions («) is then defined through the following BNF:

ax=6:mEyn & x&L] ~ala Aas.
Technically, a contextual tazonomy in LT is a set of subsumption relation
expressions which are contextualized with respect to the same context, e.g.:
{€: 7 C v9,& : 72 C ~3}. This kind of sets of expressions are what we are in-
terested in. Assertions of the form & < & provide a formalization of the notion

6 It is worth stressing again that, in fact, a language L;, as defined here, is just a
sub-language of languages of the type ALC. As we will see later in this section,
to represent contextual TBoxes the subsumption symbol is replaced by a set of
contextualized subsumption symbols.

" It might be worth remarking that language £¢7 is, then, an expansion of each L;
language.

Contextual Taxonomies 39

of generality often touched upon in context theory (see for example [6,24]). In
Section 4.1 the following symbol will be also used “. : . C.” (within context c,
concept A; is a proper subconcept of concept Ay). It can be defined as follows:

EMEY =def EMEMRA ~:1Emn.

A last category of expressions is also of interest, namely expressions repre-
senting what a concept means in a given context: for instance, recalling Example
1, “the concept vehicle in context M1”. These expressions, as it will be shown
in Section 3.2, are particularly interesting from a semantic point of view. Let us
call them contextual concept descriptions and let us define their set D through
the following BNF:

0 =& 7.
As we will see in Section 3.2, contextual concept descriptions D play an impor-
tant role in the semantics of contextual subsumption relations.

3.2 Semantics

In order to provide a semantics for £L¢7 languages, we will proceed as follows.
First we will define a class of structures which can be used to provide a formal
meaning to those languages. We will then characterize the class of operations
and relations on contexts that will constitute the semantic counterpart of the op-
erators and relation symbols introduced in Section 3.1. Definitions of the formal
meaning of our expressions will then follow.

Before pursuing this line, it is necessary to recollect the basic definition of a
description logic model for a language £; ([23]).

Definition 1. (Models for £;’s)

A model m for a language L; is defined as follows:
m = (Am,Tn)

where:

— A, is the (non empty) domain of the model;

— T is a function I, : A; — P(An), that is, an interpretation of (atomic
concepts expressions of) L; on A,,. This interpretation is extended to com-
plex concept constructs via the following inductive definition:

In(T) = A,
(L) =0
Im(_‘A) = Am\ Im(A)

In(ANB) = I,(A)NZIn(B)
In(AUB) = I,,(A) UZ,(B).

Out of technicalities, what a model m for a language L; does, is to assign a
denotation to each atomic concept (for instance the set of elements of A,, that
instantiate the concept bicycle) and, accordingly, to each complex concept (for
instance the set of elements of 4A,, that instantiate the concept vehicle M —
bicycle).

40 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

3.3 Models for £€T

We can now define a notion of contextual tazonomy model (ct-model) for lan-
guages LT

Definition 2. (ct-models)
A ct-model M is a structure:

M = ({M;}o<i<n,)
where:

— {M, }o<i<n is the family of the sets of models M; of each language L;. That
s, Ym € M;, m is a model for L;.

— T is a function I : ¢ — P(Mp) U ... UP(M,). In other words, this func-
tion associates to each atomic context identifier in ¢ a subset of the set of
all models in some language L;: I(c) = M with M C M, for some i s.t.
0 < i < n. Function I can be seen as labeling sets of models on some lan-
guage i via atomic context identifiers. Notice that I fizes, for each atomic
context identifier, the language on which the context denoted by the identifier
is specified. We could say that it is I itself which fizes a specific index for
each atomic context identifier c.

—Vm!',m" € Jycj<cp Mi, Appr = Ay That is, the domain of all models m is
unique. We assume this constraint simply because we are interested in mod-
eling different (taxonomical) conceptualizations of a same set of individuals.

This can be clarified by means of a simple example. Suppose the alphabet of £LE7
to be the set of atomic concepts {allowed, vehicle, car, bicycle} and the set
of atomic context identifiers {cps1,car2, cr}. The number of possible languages
L; given the four aforementioned concepts is obviously 2* — 1. A ct-model for
this £L97 language would have as domain the set of the sets of all models for each
of the 2* — 1 £; languages, and as interpretation a function I which assigns to
each cyr1, cpro and ci a subset of an element of that set, i.e., a set of models for
one of the £; languages. We will come back to this specific language in Section
4.1, where we discuss the formalization of the public park scenario.

The key feature of this semantics is that contexts are characterized as sets of
models for the same language. This perspective allows for straightforward model
theoretical definitions of operations on contexts.

3.4 Operations on Contexts

Before getting to this, let us first recall a notion of domain restriction (]) of a
function f w.r.t. a subset C of the domain of f. Intuitively, a domain restriction
of a function f is nothing but the function C'] f having C' as domain and s.t. for
each element of C, f and C]f return the same image. The exact definition is
the following one: C'f = {(z, f(x)) | x € C}.

Contextual Taxonomies 41

Definition 3. (Operations on contexts)
Let M’ and M" be sets of models:

LM = {m | m = (A, A\ T) & m! € M) (1)
M @, M" =M 0 ;M (2)
My, M"=1,M UM (3)
— M =M, \ 1M (4)

Intuitively, the operations have the following meaning: operation 1 allows for
abstracting the relevant content of a context with respect to a specific language;
operations 2 and 3 express basic set-theoretical composition of contexts; finally,
operation 4 returns, given a context, the most general of all the remaining con-
texts. Let us now provide some technical observations. First of all notice that
operation ; yields the empty context when it is applied to a context M’ the
language of which is not an elementary expansion of £;. This is indeed very
intuitive: the context obtained via abstraction of the context “dinosaurs” on
the language of, say, “botanics” should be empty. Empty contexts can be also
obtained through the m; operation. In that case the language is shared, but the
two contexts simply do not have any interpretation in common. This happens,
for example, when the members of two different football teams talk about their
opponents: as amatter of fact, no interpretation of the concept opponent can be
shared without jeopardizing the fairness of the match. The following propositions
can be proved with respect to the operations on contexts.

Proposition 1. (Structure of contexts on a given language)

The structure of contexts (P(M;), U, M, —;, My, 0) on a language L; is a Boolean
Algebra.

Proof. The proof follows straightforwardly from Definition 3. |
Proposition 2. (Abstraction operation on contexts)

Operation |; is surjective and idempotent.

Proof. That |; is surjective can be proved per absurdum. First notice that this
operation is a function of the following type: |; : P(Mp)U...UP(M,) — P(M;)
with 1 < ¢ < n. If it is not surjective then IM” C M, s.t. VM’ in the do-
main of |;,];M’ # M"”. This means that VM’ in the domain of |;, {m | m =
(Apys ALy & m/ € M'} # M"”, which is impossible because we have at least
that 1;M"” = M". The proof of the equation for idempotency 1;(];M) =]; M is
straightforward. [|

These propositions clarify the type of conception of context we hold here:
contexts are sets of models on different taxonomical languages; on each language
the set of possible contexts is structured in a boolean algebra; the operation of
abstraction allows for shifting from richer to simpler languages and it is, as we
would intuitively expect, idempotent (abstracting from an abstraction yields the
same first abstraction) and surjective (every context, even the empty one, can
be seen as an abstraction of a different richer context, in the most trivial case,
an abstraction of itself).

42 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

3.5 Formal Meaning of =, D, and A

In Definition 2 atomic contexts are interpreted as sets of models on some lan-
guage £, for 0 < i < m: I(c) = M € P(Mp)U...UP(M,). The semantics of
contexts constructs = can be defined via inductive extension of that definition.

Definition 4. (Semantics of contexts constructs)
The semantics of context constructors is defined as follows:

I(L;) =0
I(T;) =M;
I(&1 Ai &2) = 1(&1) M; 1(&2)
I(& Yi &) =1(&) Y; I[(&2)
I(—; &) = —1(¢)
[(abs; &) = T:1(§)

The L; context is interpreted as the empty context (the same on each language);
the T; context is interpreted as the greatest, or most general, context on L;;
the binary A;-composition of contexts is interpreted as the greatest lower bound
of the restriction of the interpretations of the two contexts on L;; the binary
Y ;-composition of contexts is interpreted as the lowest upper bound of the re-
striction of the interpretations of the two contexts on L;; context negation is
interpreted as the complement with respect to the most general context on that
language; finally, the unary abs; operator is interpreted just as the restriction of
the interpretation of its argument to language L;.

Semantics for the contextual concept description D and for the assertions A
in £¢7 is based on the function I.

Definition 5. (Semantics of contextual concept descriptions: || . ||m)
The semantics of contextual concept descriptions is defined as follows:

1€ Al ={D | {7, D) € Iom & m € L(§)}.

The meaning of a concept in a context £ is the set of denotations D attributed
to that concept by the models constituting that context.

It is worth noticing that if concept 7 is not expressible in the language of
context &, then ||€ : v||m = 0, that is, concept v gets no denotation at all in
context £. This happens simply because concept v does not belong to the domain
of functions Z,,, and there therefore exists no interpretation for that concept in
the models constituting £. This shows also how Definition 5 allows to capture
the intuitive distinction between concepts which lack denotation (||€ : v|lm =
), and concepts which have a denotation which is empty (]| : v|lm = {0}):
a concept that lacks denotation is for example the concept immigrant in the
context of public park access regulation; in the same context, a concept with
empty denotation is for example the concept carl—car.

Contextual Taxonomies 43

In what follows we will often use the notation I(£ :) instead of the heavier
1€ = Y lna-

Definition 6. (Semantics of assertions: =)
The semantics of assertions is defined as follows:

MEE§:v Ty dff 1(§:m), L€ :72) #0 and Vm € I(§), Zin(71) € Zm(y2)
M & < & iff 1(6) CI(&2)
ME~a iff not M E «a
MEaoy Aag iff ME a; and M E as.

A contextual subsumption relation between 7 and 72 holds iff I(¢) makes the
meaning of v; and -2 not empty and all models m of I(§) interpret v, as a
subconcept of . Note that this is precisely the clause for the validity of a sub-
sumption relation in standard description logics, but together with the fact that
the concepts involved are actually meaningful in that context. The < relation
between context constructs is interpreted as a standard subset relation: & < &
means that context denoted by &; contains at most all the models that & con-
tains, that is to say, & is at most as general as €. Note that this relation, being
interpreted on the C relation, is reflexive, antisymmetric and transitive. In [5]
a generality ordering with similar properties was imposed on the set of context
identifiers, and analogous properties for a similar relation have been singled out
also in [11]. The interesting thing is that such an ordering is here emergent from
the semantics. Note also that this relation holds only between contexts specified
on the same language. Clauses for boolean connectives are the obvious ones.
The satisfaction clause of contextual subsumption relations deserves some
more remarks. We observed that the satisfaction is conditioned to the mean-
ingfulness of the terms involved with respect to the context. This condition is
necessary because our contexts have different languages. Another way to deal
with this would be to impose syntactic constraints on the formation of £ : y; C 5
expressions, in order to distinguish the well-formed ones from the ill-formed ones.
However, this would determine a dependence of the definition of well-formed ex-
pressions of £ET on the models M of the language itself. Alternatively, the sat-
isfaction relation itself might be restricted to consider only those subsumptions
between concepts that, given the interpretation of the context, are interpreted as
meaningful. Nevertheless, this option too determines a weird dependence, namely
between the definition of the satisfaction relation and the models: the scope of
the satisfaction would vary according to the models®. We chose for yet another
solution, exploiting the possibility that our semantics enables of distinguishing
meaningless concepts from concepts with empty extension (see Definition 5). By
means of this feature it is possible to constrain the satisfaction of £ : v1 C o
formulas, in such a way that, for them to be true, concepts v; and 5 have

8 Though in a completely different formal setting, this way is pursued in [21,22].

44 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

to be meaningful in context £. Intuitively, we interpret contextual subsumption
relations as inherently presupposing the meaningfulness of their terms.

4 Contextual Taxonomies, “Core” and “Penumbra”

4.1 Formalizing an Example

We are now able to provide a formalization of the simple scenario introduced in
Example 1 based on the formal semantic machinery just exposed.

Ezample 2. (The public park scenario formalized) To formalize the public
park scenario within our setting a language £¢7 is needed, which contains the
following atomic concepts: allowed, vehicle, car, bicycle. Three atomic con-
texts are at issue here: the context of the main regulation R, let us call it cg; the
contexts of the municipal regulations M1 and M2, let us call them cp;q and cpso
respectively. These contexts should be interpreted on two relevant languages. A
language Lo for cg s.t. Ag = {allowed, vehicle}; and a language £ for cpn
and cpro s.t. A = Ag U {car,bicycle} (an abstract language concerning only
vehicles and objects allowed to get into the park, and a more concrete one con-
cerning, besides this, also cars and bicycles). A formalization of the scenario by
means of £LC7 formulas is the following one:

abso(car1) Yo abso(enrz) < cr (5)
cg : vehicle C —allowed (6)
cym1 Y1 cyo : car C vehicle (7)
¢y : bicycle C vehicle (8)
cym2 @ bicycle C —wvehicle 9)
¢y Y1 ey bicycle C vehicle Ll allowed. (10)

Formula (5) plays a key role, stating that the two contexts ¢pr1, ¢pre are concrete
variants of context cg. It tells this by saying that the context obtained by joining
the two concrete contexts on language Ly (the language of cg) is at most as
general as context cr. As we will see in discussing the logical consequences
of this set of formulas, formula (5) makes cp1, cpr2 inherit what holds in cg.
Formula (6) formalizes the abstract rule to the effect that vehicles belong to
the category of objects not allowed to access public parks. Formula (7) states
that in both contexts cars count as vehicles. Formulas (8) and (9) state the two
different conceptualizations of the concept of bicycle holding in the two concrete
contexts at issue. These formulas show where the two contextual taxonomies
diverge. Formula (10), finally, tells that bicycles either are vehicles or should be
allowed in the park. Indeed, it might be seen as a clause avoiding “cheating”
classifications such as: “bicycles counts as cars”.

Contextual Taxonomies 45

It is worth listing and discussing some straightforward logical consequences
of the formalization.

(5),(6) E cprq : vehicle C —allowed
(5),(6),(7) E cpn = car C —allowed
(5),(6),(8) F cp : bicycle C —allowed

6) F cpr2 : vehicle C —allowed
,(6),(7) E caro : car C —allowed
(5),(6),(9), (10) E cpr2 : bicycle C allowed

These are indeed the formulas that we would intuitively expect to hold in our
scenario. The list displays two sets of formulas grouped on the basis of the
context to which they pertain. They formalize the two contextual taxonomies
at hands in our scenario. Let us have a closer look. The first consequence of
each group results from the generality relation expressed in (5), by means of
which the content of (6) is shown to hold also in the two concrete contexts: in
simple words, contexts cp;q and cpro inherit the general rule stating that vehicles
are not allowed to access public parks. Via this inherited rule, and via (7), it
is shown that, in all concrete contexts, cars are also not allowed to access the
park. As to cars then, all contexts agree. Where differences arise is in relation
with how the concept of bicycle is handled. In context cyq, since bicycles count
as vehicles (8), bicycles are also not allowed. In context cjpro, instead, bicycles
constitute an allowed class because they are not considered to be vehicles (9)
and there is no bicycle which does not count as a vehicle and which does not
belong to that class of allowed objects (10). In the following section we show in
some more detail how a model for the formalization just exposed looks like.

4.2 A Model of the Formalization

Formulas (5)-(10) constrain ct-models in the following way:

loll(ear1) U ol(ear2) € I(cr)

VYm € I(cr), Im(vehicle) C Ay\ Z,,(allowed)

I(cg : vehicle),l(cg : allowed) # ()

Ym € I(ean) Ul(enrz), Zim(car) C Z,,(vehicle)

I(eprr Y1 eara i car),I(eprn Y1 cpr : vehicle) #£ ()

vm € I(car1), Zm(bicycle) C Z,,(vehicle)

I(cpri : bicycle),I(cps : vehicle) # ()

vm € I(carz), Im(bicycle) C Aq\ Z,,(vehicle)

I(cpre : bicycle),I(cpre : vehicle) # ()

Vm € I(can) Ul(enr2), Zm(bicycle) C Z,,(vehicle) UZ,, (allowed)
I(cpar1 Y1 cearo : bicycle), I(carn Y1 ez : @allowed) # 0.

46 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

Besides the ones above, a model of the scenario can be thought of requiring two
more constraints. Although the formal language as it is defined in 3.1 cannot
express them, we show that they can be perfectly captured at a semantic level
and therefore that new appropriate symbols might be accordingly added to the
syntax.

— I(car @ bicycle) = I(cpz : bicycle) = {{a,b}}° (car1 and cpro agree on
the interpretation of bicycle, say, the set of objects {a,b});

— I(ep : car) = I(epro @ car) = {{c}}Y (a1 and cpr2 agree on the interpre-
tation of car, say, the singleton {c}).

Let us stipulate that the models m that will constitute our interpretation of
contexts identifiers consist of a domain A,, = {a,b,c,d} and let us call the sets
of all models for £y and £1 on this domain respectively My and M. Given the
restrictions, a ct-model of the scenario can consist then of the domain My U M;
and of the function I s.t.:

— I(carn) = {m1,ma} C My st. Z,,, (allowed) = {d}, Z,,, (vehicle) =
{a,b,c}, Iy, (bicycle) = {a,b}, I, (car) = {c} and Z,,,(allowed) = 0,
Zm,(vehicle) = {a,b, c,d}, I, (bicycle) = {a,b}, Z,,,(car) = {c}.

In cpr1 concepts allowed and vehicle are interpreted in two possible ways;
notice that model mo makes no object allowed to access the park;

— I(cpr2) = {ms} C M s.t. Z,,,(allowed) = {a, b}, Z,,,(vehicle) = {c,d},
T (car) = {c}, Ty, (bicycle) = {a,b}.

In cpro, which is constituted by a single model, the concept vehicle strictly
contains car, and excludes bicycle. Notice also that bicycle coincide with
allowed.

— I(cr) = {m | Z;n(vehicle) C A\ Z,,(allowed)}.

In cp, concepts vehicle and allowed get all possible interpretations that
keep them disjoint.

We can now get to the main formal characterizations at which we have been
aiming in this work.

4.3 Representing Conceptual “Core” and “Penumbra”

What is the part of a denotation of a concept which remains context indepen-
dent? What is the part which varies instead? “Core” and “penumbral” meaning
are formalized in the two following definitions.

Definition 7. (Core(v,£&1,&2))
The “core meaning” of concept v w.r.t. contexts &1,&> on language L; is defined
as:

Cove(y, &1, 62) =des [JI(&1 :7) UT(E2 = 7).

° It might be worth recalling that the meaning of a concept in a context is a set of
denotations, which we assume to be here, for the sake of simplicity (and in accordance
with our intuitions about the scenario), a singleton.

10 See previous footnote.

Contextual Taxonomies 47

Intuitively, the definition takes just the conjunction of the union of the inter-
pretations of v in the two contexts. Referring back to Example 2, we have that
Core(vehicle, cprr, car2) = {c}, that is, the core of the concept vehicle coin-
cides, in those contexts, with the denotation of the concept car. The notion of
“penumbra” is now easily definable.

Definition 8. (‘Penumbra(y,&q,£2))
The “penumbra” of concept v w.r.t. contexts £1,& on language L; is defined as:

Penumbra(y, &1, 82) =aes | J(I(& :7) UL(E 7)) \ Core(v,£1,%)).

A “penumbral meaning” is then nothing else but the set of individuals on which
the contextual interpretation of the concept varies. Referring back again to Ex-
ample 2: Penumbra(vehicle, ey, car2) = {a,b,d}, that is to say, the penumbra
of the concept vehicle ranges over those individuals that are not instances
of the core of vehicle, i.e., the concept car. Notice that the definitions are
straightforwardly generalizable to formulations with more than two contexts.

5 Related Work

We already showed, in Section 2, how the present proposal relates to work de-
veloped in the area of logical modeling of the notion of context. Contexts have
been used here in order to propose a different approach to vagueness (especially
as it appears in the normative domain). In this section some words will be spent
in order to put the present proposal in perspective with respect to some more
standard approaches to vagueness, namely approaches making use of fuzzy sets
([25]) or rough sets ([26]).

The most characteristic feature of our approach, with respect to fuzzy or
rough set theories, consists in considering vagueness as an inherently semantic
phenomenon. Vagueness arises from the referring of a language to structures
modeling reality, and not from those structures themselves. That is to say, the
truth denotation of a predicate is, in our approach, always definite and crisp,
even if multiple. Consequently, no degree of membership is considered, as in
fuzzy logic, and no representation of sets in terms of approximations is used,
as in rough set theory. Let us use a simple example in order to make this dis-
tinction evident. Consider the vague monadic predicate or, to use a description
logic terminology, the concept tall_person. Fuzzy approaches would determine
the denotation of this predicate as a fuzzy set, i.e., as the set of elements with
membership degree contained in the interval]0, 1]. Standard rough set theory
approaches would characterize this denotation not directly, but on the basis of
a given partition of the universe (the set of all individuals) and a lower and
upper approximation provided in terms of that partition. For instance, a trivial
partition might be the one consisting of the following three concepts: tall>2m,
1.60m<tall<2m, tall<1l.60m. Concept tall _person would then be approxi-
mated by means of the lower approximation tall>2m (the elements of a set that

48 D. Grossi, F. Dignum, and J.-J. Ch. Meyer

are definitely also members of the to be approximated set), and the upper ap-
proximation 1.60m<tall<2m Ll tall>2m (the elements of a set that may be also
members of the to be approximated set). In this rough set representation, set
1.60m<tall<2m constitutes the so called boundary of tall_person. Within our
approach instead, the set tall_person can be represented crisply and without
approximations. The key feature is that tall_person obtains multiple crisp in-
terpretations, at least one for each context: in the context of dutch standards,
concept tall_person does not subsume concept 1.60m<tall<2m, whereas it
does in the context of pygmy standards. According to our approach, vagueness
resides then in the contextual nature of interpretation rather than in the concepts
themselves'!.

It is nevertheless easy to spot some similarities, in particular with respect to
rough set theory. The notions of “core” and “penumbra” have much in common
with the notions of, respectively, lower approximation and boundary developed
in rough set theory: each of these pairs of notions denotes what is always, and re-
spectively, in some cases, an instance of a given concept. But the characterization
of the last pair is based on a partition of the universe denoting the equivalence
classes imposed by a set of given known properties. The notions of “core” and
“penumbra”, instead, are yielded by the consideration of many contextual inter-
pretations of the concept itself. With respect to fuzzy approaches, notice that
sets Cote can be viewed exactly as the sets of instances having a membership
degree equal to one, while sets Penumbra can be viewed as the sets of instances
with degree of membership between zero and one. Besides, sets PBenumbra could
be partitioned in sets X,, each containing instances that occur in a fixed number
n of models constituting the “penumbra”, thus determining a total and, notice,

11 A clear position for our thesis can also be found within those analyses of vagueness,
developed in the area of philosophical logic, which distinguish between de re and de
dicto views of vagueness ([27]), the first holding that referents themselves are vague
and therefore that vagueness constitutes something objective, whereas the second
holding that it is the way referents are established that determines vagueness. Fuzzy
set approaches lie within a de re conception of vagueness, while our approach is
grounded on the alternative de dicto view (rough sets approaches have instead more
to do with insufficient information issues). In philosophical logic, a formal theory has
been developed which formalizes this de dicto approach to vagueness, the so called
superevaluationism ([28]). On this view, when interpreting vague terms, we consider
the many possible ways in which those terms can be interpreted:

“Whatever it is that we do to determine the ‘intended’ interpretation of our
language determines not one interpretation but a range of interpretations. (The
range depends on context [...])” ([29]).

As it is evident from Section 3.2, this intuition backs also our semantics. What our
approach adds to formal accounts of superevaluationism such as [28,30] consists in
the explicit use of contexts as specific formal objects clustering the possible ways
terms can be interpreted: contexts are precisely the range of admissible interpreta-
tions of the concepts at issue.

Contextual Taxonomies 49

discrete ordering on membership: instances occurring in only one model in the
“penumbra” will belong to the denotation of the concept at the minimum degree
of membership, while instances occurring in the “core” at the maximum one.

Another relevant feature of our proposal, which we deem worth stressing,
consists in the use of a fragment of predicate logic. This allows, first of all, the
intra-contextual reasoning to be classical. Furthermore, the use of description
logic, even if not yet fully elaborate in this work, allows for its well known inter-
esting computability properties to be enabled at the intra-contextual reasoning
level, thus making the framework appealing also in this respect.

6 Conclusions

Our aim was to account for a notion of contextual taxonomy, and by means
of that, to rigorously characterize the notions of “core” and “penumbra” of a
concept, that is to say, to define what is invariant and what is instead context
dependent in the meaning of a concept. We did this contextualizing of a standard
description logic notion of taxonomy by means of a formal semantics approach
to contexts which provides also an account of a variety of forms of contexts
interactions.

There are a number of issues which would be worth investigating in future
work. First of all, it would be of definite interest to provide formal rigorous
comparisons of our framework with:

— Related work in the area of context logics, like especially the local model
semantics proposed in [16] to which we referred in Section 2.

— Related work in the area of fuzzy or rough sets treatment of conceptual
ambiguities ([26,25]), which have been informally touched upon in Section
5.

— Related work in the area of logic for normative systems specification, and
in particular [31] where a modal logic semantics is used to account for ex-
pressions such as “A counts as B in context (institution) s”. To this aim, we
plan to apply the notion of contextual subsumption relation to modal logic
semantics in order to contextualize accessibility relations. For example, it
would be interesting to investigate applications to dynamic logic semantics
in order to provide a formal account of the contextual meaning of actions:
raising a hand in the context of a bidding means something different than
raising a hand in the context of a scientific workshop. Some results on this
issue have been presented in [32].

Secondly, we would like to enrich the expressivity of our framework considering
richer description logic languages admitting also attributes (or roles) constructs.
This would allow for a formal characterization of “contextual terminologies” in
general, enabling the full expressive power description logics are able to provide.
A first step along this line has been proposed in [33].

50

D. Grossi, F. Dignum, and J.-J. Ch. Meyer

Acknowledgments

We would like to thank the anonymous reviewers of CLIMA V. Thanks to their
comments, this work has been considerably improved.

References

1.

11.

12.
13.

14.
15.

16.

17.

18.

19.

Dignum, F.: Agents, markets, institutions, and protocols. In: Agent Mediated Elec-
tronic Commerce, The European AgentLink Perspective., Springer-Verlag (2001)
98-114

Vazquez-Salceda, J., Dignum, F.: Modelling electronic organizations. In V. Marik,
J.M., Pechoucek, M., eds.: Proceedings CEEMAS’03. LNAI 2691, Berlin, Springer-
Verlag (2003) 584-593

Dignum, F.: Abstract norms and electronic institutions. In: Proceedings of the
International Workshop on Regulated Agent-Based Social Systems: Theories and
Applications (RASTA ’02), Bologna. (2002) 93-104

Viézquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent
Systems. Birkhuser Verlag AG (2004)

Grossi, D., Dignum, F.: From abstract to concrete norms in agent institutions. In
Hinchey, M.G., Rash, J.L., Truszkowski, W.F., et al., eds.: Formal Approaches to
Agent-Based Systems: Third International Workshop, FAABS 2004. Lecture Notes
in Computer Science, Springer-Verlag (2004) 12-29

McCarthy, J.: Notes on formalizing contexts. In Kehler, T., Rosenschein, S., eds.:
Proceedings of the Fifth National Conference on Artificial Intelligence, Los Altos,
California, Morgan Kaufmann (1986) 555-560

Akman, V., Surav., M.: Steps toward formalizing context. AI Magazine 17 (1996)
55-72

Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. Journal
of Experimental and Theoretical Artificial Intelligence (JETAT) 12 (2000) 279-305
Searle, J.: The Construction of Social Reality. Free Press (1995)

. Hage, J., Verheij, B.: The law as a dynamic interconnected system of states of

affairs. IJHCS: International Journal of Human-Computer Studies 51 (1999) 1043~
1077

Goldman, A.I.: A Theory of Human Action. Princeton University Press, Princeton
(1976)

Hart, H.L.A.: The Concept of Law. Clarendon Press, Oxford (1961)

Hart, H.L.A.: Positivism and the separation of law and morality. Harvard Law
Review 71 (1958) 593-629

Prakken, H.: Logical Tools for Modelling Legal Arguments. Kluwer (1997)
Royakkers, L., Dignum, F.: Defeasible reasoning with legal rules. In Nute, D., ed.:
Defeasible Deontic Logic, Dordrecht, Kluwer (1997) 263-286

Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence 127 (2001) 221-259

Parsons, S., Jennings, N.J., Sabater, J., Sierra, C.: Agent specification using multi-
context systems. Foundations and Applications of Multi-Agent Systems (2002)
Casali, A., Godo, L., Sierra, C.: Graded bdi models for agent architectures. In this
volume.

Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do
without modal logics. Artificial Intelligence 65 (1994) 29-70

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.
31.

32.

33.

Contextual Taxonomies 51

Giunchiglia, F.: Contextual reasoning. Epistemologia, special issue on I Linguaggi
e le Macchine 16 (1993) 345-364

Buva¢, S.V., Mason, I.A.: Propositional logic of context. Proceedings AAAI’93
(1993) 412-419

Buvag, S., Buva¢, S.V., Mason, I.A.: The semantics of propositional contexts.
Proceedings of the eight ISMIS. LNAI-869 (1994) 468477

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2002)
McCarthy, J.: Generality in artificial intelligence. Communications of the ACM
30 (1987) 1030-1035

Wygralak, M.: Vaguely Defined Objects. Kluwer Academic Publishers (1996)
Lin, T.Y., Cercone, N.: Rough Sets and Data Mining. Analysis of Imprecise Data.
Kluwer Academic Publishers (1997)

Varzi, A.: Vague names for sharp objects. In Obrst, L., Mani, 1., eds.: Proceedings
of the Workshop on Semantic Approximation, Granularity, and Vagueness, AAAI
Press (2000) 73-78

van Fraassen, B.C.: Singular terms, truth-value gaps, and free logic. Journal of
Philosophy 63 (1966) 481-495

Lewis, D.: Many, but almost one. In: Papers in Metaphysics and Epistemology,
Cambridge University Press (1999) 164-182

Fine, K.: Vagueness, truth and logic. Synthese 30 (1975) 265-300

Jones, A.J.I., Sergot, M.: A formal characterization of institutionalised power.
Journal of the IGPL 3 (1996) 429-445

Grossi, D., Meyer, J-J. Ch., Dignum, F.: Modal logic investigations in the semantics
of counts-as. (Submitted)

Grossi, D., Aldewereld, H., Vazquez-Salceda, J., Dignum, F.: Ontological aspects of
the implementation of norms in agent-based electronic institutions. To be presented
at NorMAS (2005)

From Logic Programs Updates to Action
Description Updates*

José Julio Alferes', Federico Banti', and Antonio Brogi?

L CENTRIA, Universidade Nova de Lisboa, Portugal
{jja, banti}@di.fct.unl.pt
2 Dipartimento di Informatica, Universita di Pisa, Italy
brogi@di.unipi.it

Abstract. An important branch of investigation in the field of agents
has been the definition of high level languages for representing effects
of actions, the programs written in such languages being usually called
action programs. Logic programming is an important area in the field
of knowledge representation and some languages for specifying updates
of Logic Programs had been defined. Starting from the update language
Evolp, in this work we propose a new paradigm for reasoning about
actions called Evolp action programs.

We provide translations of some of the most known action descrip-
tion languages into Evolp action programs, and underline some peculiar
features of this newly defined paradigm. One such feature is that Evolp
action programs can easily express changes in the rules of the domains,
including rules describing changes.

1 Introduction

In the last years the concept of agent has become central in the field of Artificial
Intelligence. “An agent is just something that acts” [26]. Given the importance
of the concept, ways of representing actions and their effects on the environment
have been studied. A branch of investigation in this topic has been the defini-
tion of high level languages for representing effects of actions [7,12, 14, 15], the
programs written in such languages being usually called action programs. Action
programs specify which facts (or fluents) change in the environment after the
execution of a set of actions. Several works exist on the relation between these
action languages and Logic Programming (LP) (e.g. [5,12,21]). However, de-
spite the fact that LP has been successfully used as a language for declaratively
representing knowledge, the mentioned works basically use LP for providing
an operational semantics, and implementation, for action programs. This is so
because normal logic programs, and most of their extensions, have no in-built

* This work was partially supported by project FLUX (POSI/40958/SRI1/2001), and
by the European Commission within the 6th Framework Programme project REW-
ERSE number 506779 (cf. http://rewerse.net).

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 52-77, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

From Logic Programs Updates to Action Description Updates 53

means for dealing with changes, something that is quite fundamental for action
languages.

In recent years some effort was devoted to explore and study the problem of
how to update logic programs with new rules [3, 8, 10, 19, 20, 17]. Here, knowledge
is conveyed by sequences of programs, where each program in a sequence is an
update to the previous ones. For determining the meaning of sequences of logic
programs, rules from previous programs are assumed to hold by inertia after
the updates (given by subsequent programs) unless rejected by some later rule.
LP update languages [2,4,9,19], besides giving meaning to sequences of logic
programs, also provide in-built mechanisms for constructing such sequences. In
other words, LP update languages extend LP by providing means to specify and
reason about rule updates.

In [5] the authors show, by examples, a possible use the LP update language
LUPS [4] for representing effects of actions providing a hint for the possibility
of using LP updates languages as an action description paradigm. However,
the work done does not provide a clear view on how to use LP updates for
representing actions, nor does it establishes an exact relationship between this
new possibility and existing action languages. Thus, the eventual advantages of
the LP update languages approach to actions are still not clear.

The present work tries to clarify these points. This is done by establishing a
formal relationship between one LP update language, namely the Evolp language
[2], and existing action languages, and by clarifying how to use this language for
representing actions in general.

Our investigation starts by, on top of Evolp, defining a new action description
language, called Evolp Action Programs (EAPs), as amacro language for Evolp.
Before developing a complete framework for action description based on LP
updates, in this work we focus on the basic problem in the field, i.e. the prediction
of the possible future states of the world given a complete knowledge of the
current state and the action performed. Our purpose is to check, already at
this stage, the potentiality of an action description language based on the Evolp
paradigm.

We then illustrate the usage of EAPs by an example involving a variant
of the classical Yale Shooting Problem. An important point to clarify is the
comparison of the expressive capabilities of the newly defined language with
that of the existing paradigms. We consider the action languages A [12], B [13]
(which is a subset of the language proposed in [14]), and (the definite fragment
of) C [15]. We provides simple translations of such languages into EAPs, hence
proving that EAPs are at least as expressive as the cited action languages.

Coming to this point, the next natural question is what are the possible
advantages of EAPs. The underlying idea of action frameworks is to describe
dynamic environments. This is usually done by describing rules that specify,
given a set of external actions, how the environment evolves. In a dynamic en-
vironment, however, not only the facts but also the “rules of the game” can
change, in particular the rules describing the changes. The capability of describ-
ing such kind of meta level changes is, in our opinion, an important feature of an

54 J.J. Alferes, F. Banti, and A. Brogi

action description language. This capability can be seen as an instance of elabo-
ration tolerance i.e. “the ability to accept changes to a person’s or a computer’s
representation of facts about a subject without having to start all over” [25].
In [15] this capability is seen as a central point in the action descriptions field
and the problem is addressed in the context of the C language. The final words
of [15] are “Finding ways to further increase the degree of elaboration tolerance
of languages for describing actions is a topic of future work”. We address this
topic in the context of EAPs and show EAPs seem, in this sense, more flexi-
ble than other paradigms. Evolp provides specific commands that allow for the
specification of updates to the initial program, but also provides the possibility
to specify updates of these updates commands. We show, by successive elabora-
tions of the Yale shooting problem, how to use this feature to describe updates
of the problem that come along with the evolution of the environment.

The rest of the paper is structured as follows. In section 2 we review some
background and notation. In section 3 we define the syntax and semantics of
Evolp action programs, and we illustrate the usage of EAPs by an example in-
volving a variant of the classical Yale Shooting Problem. In section 4 we establish
the relationship between EAPs and the languages A, B and C. In section 5 we
discuss the possibility of updating the EAPs, and provide an example of such
feature. Finally, in section 6, we conclude and trace a route for future develop-
ments. To facilitate the reading, and given that some of the results have proofs
of some length, instead of presenting proofs along with the text, we expose them
all in appendix A.

2 Background and Notation

In this section we briefly recall syntax and semantics of Dynamic Logic Programs
[1], and the syntax and semantics for Evolp [2]. We also recall some basic notions
and notation for action description languages. For a more detailed background
on action languages see e.g. [12].

2.1 Dynamic Logic Programs and Evolp

The main idea of logic programs updates is to update a logic program by an-
other logic program or by a sequence of logic programs, also called Dynamic
Logic Programs (DLPs). The initial program of a DLP corresponds to the initial
knowledge of a given (dynamic) domain, and the subsequent ones to successive
updates of the domain. To represent negative information in logic programs and
their updates, following [3] we allow for default negation not A not only in the
premises of rules but also in their heads i.e., we use generalized logic programs
(GLPs) [22].

A language L is any set of propositional atoms. A literal in £ is either an
atom of £ or the negation of an atom. In general, given any set of atoms F, we
denote by Fr, the set of literals over F. Given a literal F, if F' = @), where @ is
an atom, by not F we denote the negative literal not Q). Viceversa, if F' = not Q,

From Logic Programs Updates to Action Description Updates 55

by not F' we denote the atom @. A GLP defined over a propositional language
L is a set of rules of the form F' <« Body, where F' is a literal in £, and Body
is a set of literals in £.! An interpretation I over a language L is any set of
literals in £ such that, for each atom A, either A € I or not A € I. We say
a set of literals Body is true in an interpretation I (or that I satisfies Body)
iff Body C I. In this paper we will use programs containing variables. As usual
when programming within the stable models semantics, a program with variables
stands for the propositional program obtained as the set of all possible ground
instantiations of the rules.

Two rules 7 and n are conflicting (denoted by 7 <1 n) iff the head of 7 is the
atom A and the head of 7 is not A, or viceversa. A Dynamic Logic Program
over a language L is a sequence P, @ ... ® P, (also denoted @P/™) where the
P;s are GLPs defined over L. The refined stable model semantics of such a DLP,
defined in [1], assigns to each sequence P; & ... P, a set of stable models (that
is proven there to coincide with the stable models semantics when the sequence
is formed by a single normal [11] or generalized program [22]). The rationale for
the definition of a stable model M of a DLP is made in accordance with the
causal rejection principle [10,19]: If the body of a rule in a given update is true
in M, then that rule rejects all rules in previous updates that are conflicting
with it. Such rejected rules are ignored in the computation of the stable model.
In the refined semantics for DLPs a rule may also reject conflicting rules that
belong to the same update. Formally, the set of rejected rules of a DLP ®P"
given an interpretation M is:

RejS(EBP{”,M):{T|T€Pi: dnePji<j, txan A Body(n) C M}

Moreover, an atom A is assumed false by default if there is no rule, in none
of the programs in the DLP, with head A and a true body in the interpretation
M. Formally:

Default(®@P™, M) ={not A| A A« Body € UPi A Body C M}

If ®P/" is clear from the context, we omit it as first argument of the above
functions.

Definition 1. Let ®@P™ be a DLP over language L and M an interpretation.
M is a refined stable model of ®P™ iff

M = least ((U P \RejS(M)> U Default(M))

where least(P) denotes the least Herbrand model of the definite program [23]
obtained by considering each negative literal not A in P as a new atom.

! Note that, by defining rule bodies as sets, the order and number of occurrences of
literals do not matter.

56 J.J. Alferes, F. Banti, and A. Brogi

Having defined the meaning of sequences of programs, we are left with the
problem of how to come up with those sequences. This is the subject of LP update
languages [2,4,9,19]. Among the existing languages, Evolp [2] uses a particulary
simple syntax, which extends the usual syntax of GLPs by introducing the special
predicate assert/1. Given any language L, the language L,ssert 1S recursively
defined as follows: every atom in L is also in Lyggert; for any rule 7 over Lyggert,
the atom assert(r) is in Lgssert; nothing else is in Lygsert. An Evolp program
over L is any GLP over L,ssert- An Fvolp sequence is a sequence (or DLP) of
Evolp programs. The rules of an Evolp program are called Fuvolp rules.

Intuitively an expression assert(r) stands for “update the program with the
rule 77. Notice the possibility in the language to nest an assert expression in
another. The intuition behind the Evolp semantics is quite simple. Starting from
the initial Evolp sequence &P we compute the set, SM(BP™), of the stable
models of @P™. Then, for any element M in SM(BP™), we update the initial
sequence with the program P, ;1 consisting of the set of rules 7 such that the
atom assert(r) belongs to M. In this way we obtain the sequence ®P/™ @ Py, 1.
Since SM(®P™) contains, in general, several models we may have different lines
of evolution. The process continues by obtaining the various SM(@PZ"H) and,
with them, various @P{”H. Intuitively, the program starts at step 1 already
containing the sequence @P/". Then it updates itself with the rules asserted
at step 1, thus obtaining step 2. Then, again, it updates itself with the rules
asserted at this step, and so on. The evolution of any Evolp sequence can also
be influenced by external events. An external event is itself an Evolp program.
If, at a given step n, the programs receives the external update E,, the rules
in E,, are added to the last self update for the purpose of computing the stable
models determining the next evolution but, in the successive step n+ 1 they are
no longer considered (that’s why they are called events). Formally:

Definition 2. Let n and m be natural numbers. An evolution interpretation
of length n, of an evolving logic program @®P]" is any finite sequence M =
My, ... , M, of interpretations over Lyssert- The evolution trace associated with
M and &P is the sequence P1 & ...Pp, & Pyy1 ... & Ppyn_1, where, for
1<i<n

Pyi = {7 | assert(r) € My,1i—1}

Definition 3 (Evolving stable models). Let @P™ and ®E! be any Evolp
sequences, and M = My, ..., M, be an evolving interpretation of length n. Let
P ® ...®Pyin_1 be the evolution trace associated with M and ®P™. We say
that M is an evolving stable model of ®P]" with event sequence ®E] at step n
iff My, is a refined stable model of the program Py @ ... ® (P, U Ey) for any k,
withm<k<m+n-—1.

2.2 Action Languages

The purpose of an action language is to provide ways of describing how an
environment evolves given a set of external actions. A specific environment that
can be modified through external actions is called an action domain. To any

From Logic Programs Updates to Action Description Updates 57

action domain we associate a pair of sets of atoms F and A. We call the elements
of F fluent atoms or simply fluents, and the elements of A action atoms or
simply actions. Basically, the fluents are the observables in the environment and
the actions are, clearly, the external actions. A fluent literal (resp. action literal)
is an element of F, (resp. an element of Ay). In the following, we will use the
letter Q to denote a fluent atom, the letter F' to denote a fluent literal, and the
letter A to denote an action atom. A state of the world (or simply a state) is
any interpretation over F. We say a fluent literal F' is true at a given state s iff
F belongs to s. Given a set (or, by abuse of notation, a conjunction) of fluent
literals Cond we say s satisfies Cond, and write s = Cond, iff Cond C s.

Each action language provides ways to describe action domains through sets
of expression called action programs. Usually, the semantics of an action program
is defined in terms of a transition system, i.e. a function whose argument is any
pair (s, K), where s is a state of the world and K is a subset of .4, and whose
value is any set of states of the world. Intuitively, given the current state of the
world, a transition system specifies which are the possible resulting states after
simultaneously performing all actions in K.

Two kinds of expressions that are common within action description lan-
guages are static and dynamic rules. The static rules basically describe the rules
of the domain, while dynamic rules describe effects of actions. A dynamic rule
has a set of preconditions, namely conditions that have to be satisfied in the
present state in order to have a particular effect in the future state, and post-
conditions describing such an effect.

In the following we will consider three existing action languages, namely:
A, B and C. The language A [13] is very simple. It only allows dynamic rules of
the form

A causes F if Cond

where Cond is a conjunction of fluent literals. Such a rule intuitively means:
performing the action A causes F' to be true in the next state if Cond is true in
the current state. The language B [13] is an extension of A which also considers
static rules. In B, static rules are expressions of the form

F if Body

where Body is a conjunction of fluent literals. Intuitively, such a rule means: if
Body is true in the current state, then F' is also true in the current state. A
fundamental notion, in both A and B, is fluent inertia [13]. A fluent F' is inertial
if its truth value is preserved from a state to another, unless it is changed by
the (direct or indirect) effect of an action. Hereafter a program written in the
language B will be called a B program.

The semantics of B is defined in terms of a transition system, as sketched
above. For introducing the particular transition function that, given a state s
and a set of actions K, determines the possible resulting states according to B,
we first consider the set D(s, K) of fluents literals that are true as a (direct)
consequence of actions. Any literal F' is a direct consequence of state s and
actions K if it is in the head of a dynamic rule A causes F' if Cond such that

58 J.J. Alferes, F. Banti, and A. Brogi

A € K and Cond is true in s. Then a state s’ is a possible resulting states from
s iff any fluent literal in s is an element of D(s, K) or is a true literal in s (that
followed by inertia) or is a consequence of a static rule:

Definition 4. Let P be any B program with set of fluents F, let R be the set
of all static rules in P, and let s be a state and K any set of actions. Moreover,
let D(s, K) be the following set of literals

D(s,K)={F:3 A causes F if Cond € P st. Ae¢ K N sk Cond}
and let R*F be the logic program:
REP = {F «— Body : F if Body € R}
A state s’ is a resulting state from s given P and the set of actions K iff
s’ =least(sNs' UD(s, K) UREP)
where least(P) is as in Definition 1

For a detailed explanation of A and B see e.g. [13].
Static and dynamic rules are also the ingredients of the action language C
[15,16]. Static rules in C are of the form

caused J if H
while dynamic rules are of the form
caused J if H after O

where J and H are formulae such that any literal in them is a fluent literal, and
O is any formula such that any literal in it is a fluent or an action literal. The for-
mula O is the precondition of the dynamic rule and the static rule caused J if H
is its postcondition. The semantic of C is based on causal theories[15]. Causal
theories are sets of rules of the form caused J if H, each such rule meaning:
If H is true this is an explanation for .J. A basic principle of causal theories
is that something is true iff it is caused by something else. Given any action
program P, a state s and a set of actions K, we consider the causal theory T
given by the static rules of P and the postconditions of the dynamic rules whose
preconditions are true in s U K. Then s’ is a possible resulting state iff it is a
causal model of T.

3 Evolp Action Programs

As we have seen, Evolp and action description languages share the idea of a sys-
tem that evolves. In both, the evolution is influenced by external events (respec-
tively, updates and actions). Evolp is actually a programming language devised

From Logic Programs Updates to Action Description Updates 59

for representing any kind of computational problem, while action description
languages are devised for the specific purpose of describing actions. A natural
idea is then to develop special kind of Evolp sequences for representing actions,
and then compare such kind of programs with existing action description lan-
guages. We will develop one such kind of programs, and call them FEvolp Action
Programs (EAPs).

Following the underlying notions of Evolp, we use the basic construct assert
for defining special-purpose macros. As it happens with other action description
languages, EAPs are defined over a set of fluents F and a set of actions .A.
In EAPs, a state of the world is any interpretation over F. To describe action
domains we use an initial Evolp sequence, I @& D. The Evolp program D contains
the description of the environment, while I contains some initial declarations, as
it will be clarified later. As in B and C, EAPs contain static and dynamic rules.

A static rule over (F,.A) is simply an Evolp rule of the form

F — Body.

where F' is a fluent literal and Body is a set of fluent literals.
A dynamic rule over (F, A) is a (macro) expression

effect(7) — Cond.

where 7 is any static rule F' « Body and Cond is any set of fluent or action
literals. The intuitive meaning of such a rule is that the static rule 7 has to
be considered only in those states whose predecessor satisfies condition Cond.
Since some of the conditions literals in Cond may be action atoms, such a rule
may describe the effect of a given set of actions under some conditions. Such an
expression stands for the following set of Evolp rules:

F — Body, event(F «— Body). (1)
assert(event(F «— Body)) < Cond. (2)
assert(not event(F «— Body)) « event(r),not assert(event(F «— Body))(3)

where event(F < Body) is a new literal. Let us see how the above set of rules
fits with its intended intuitive meaning. Rule (1) is not applicable whenever
event(F « Body) is false. If at some step n, the conditions Cond are satisfied,
then, by rule (2), event(F « Body) becomes true at step n + 1. Hence, at step
n+ 1, rule (1) will play the same role as static rule F' <+ Body. If at step n + 1
Cond is no longer satisfied, then, by rule (3) the literal event(F « Body) will
become false again, and then rule (1) will be again not effective.

Besides static and dynamic rules, we still need another ingredient to complete
our construction. As we have seen in the description of the B language, a notable
concept is fluent inertia. This idea is not explicit in Evolp where the rules (and
not the fluents) are preserved by inertia. Nevertheless, we can show how to obtain
fluent inertia by using macro programming in Evolp. An inertial declaration over
(F,A)is a (macro) expression inertial(K), where IC C F. The intended intuitive
meaning of such an expression is that the fluents in IC are inertial. Before defining

60 J.J. Alferes, F. Banti, and A. Brogi

what this expression stands for, we state that the above mentioned program [
is always of the form initialize(F), where initialize(F) stands for the set of
rules Q «— prev(Q), where @ is any fluent in F, and prev(Q) are new atoms
not in F U A. The inertial declaration inertial(K) stands for the set (where Q
ranges over K):

assert(prev(Q)) «— Q. assert(not prev(Q)) < not Q.

Let us consider the behaviour of this macro. If we do not declare @Q as an
inertial fluent, the rule Q < prev(Q) has no effect. If we declare @ as an inertial
literal, prev(Q) is true in the current state iff in the previous state @) was true.
Hence, in this case, @ is true in the current state unless there is a static or dy-
namic rule that rejects such assumption. Viceversa, if () was false in the previous
state, then @ is true in the current one iff it is derived by a static or dynamic
rule. We are now ready to formalize the syntax of Evolp action programs.

Definition 5. Let F and A be two disjoint sets of propositional atoms. An
Evolp action program (EAP) over (F, A) is any Evolp sequence I & D, where
I = Initialize(F), and D is any set with static and dynamic rules, and inertial
declarations over (F,A)

Given an Evolp action program I @ D, the initial state of the world s (which,
as stated above, is an interpretation over F) is passed to the program together
with the set K of the actions performed at s, as part of an external event. A
resulting state is the last element of any evolving stable model of I & D given
the event s U K restricted to the set of fluent literals. Le:

Definition 6. Let I ® D be any EAP over (F, A), and s a state of the world.
Then s’ is a resulting state from s given I & D and the set of actions K iff there
exists an evolving stable model My, My of I® D given the external events sUK, ()
such that s’ =z Ms (where by 8" =5 Ma we simply mean s' N Fry = Mo NFrit).

This definition can be easily generalized to sequences of set of actions.

Definition 7. Let I & D be any EAP and s a state of the world. Then s’ is a

resulting state from s given I ® D and the sequence of sets of actions K1 ..., K,
iff there exists an evolving stable model My, ..., My 1 of I&D given the external
events (sU K1),..., Kn,0 such that 8 =5 My,11.

Since EAPs are based on the Evolp semantics, which in turn is an extension
of the stable model semantics for normal logic programs, we can easily prove
that the complexity of the computation of the two semantics is the same.

Theorem 1. Let I & D be any EAP over (F,A), s a state of the world and
K C A. To find a resulting state s’ from s given I ® D and the set of actions K
is an NP-complete problem.

It is important to notice that, if the initial state s does not satisfies the static
rules of the EAP, the correspondent Evolp sequence has no stable model, and

From Logic Programs Updates to Action Description Updates 61

hence there will be no successor state. This is, in our opinion, a good result: The
initial state is just a state as any other. It would be strange if such state would
not satisfy the rules of the domain. If this situation occurs, most likely either
the translation of the rules, or the one of the state, presents some errors. From
now onwards we will assume that the initial state satisfies the static rules of the
domain.

To illustrate EAPs, we now show an example of their usage by elaborating
on probably the most famous example of reasoning about actions. The presented
elaboration highlights some important features of EAPs, viz. the possibility of
handling non-deterministic effects of actions, non-inertial fluents, non-executable
actions, and effects of actions lasting for just one state.

Ezample 1 (An elaboration of the Yale shooting problem). In the original Yale
shooting problem [27], there is a single-shot gun which is initially unloaded, and
a turkey which is initially alive. One can load the gun and shoot the turkey. If
one shoots, the gun becomes unloaded and the turkey dies. We consider a slightly
more complex scenario where there are several turkeys, and where the shooting
action refers to a specific turkey. Each time one shoots as specific turkey, one
either hits and kills the bird, or misses it. Moreover, the gun becomes unloaded
and there is a bang. It is not possible to shoot with an unloaded gun. We also
add the property that any turkey moves iff it is not dead.

For expressing that an action is not executable under some conditions, we
make use of a well known behaviour of the stable model semantics. Suppose a
given EAP contains a dynamic rules of the form effect(u «— not u) «— Cond,
where u is a literal which does not appear elsewhere (in the following, for repre-
senting such rules, we use the notation effect(L) «— Cond). With such a rule, if
Cond is true in the current state, then there is no resulting state. This happens
because, as it is well known, programs containing u < not v and no other rules
for u, have no stable models.

To represent the problem, we consider the fluents dead(X), moving(X),
hit(X), missed(X), loaded, bang, plus the auxiliary fluent u, and the actions
shoot(X) and load (where the Xs range over the various turkeys). The fluents
dead(X) and loaded are inertial fluents, since their truth value should remain
unchanged until modified by some action effect. The fluents missed(X), hit(X)
and bang are not inertial. The problem is encoded by the EAP I & D, where

I = initialize(dead(X), moving(X), missed(X), hit(X), loaded, bang, u)

and D is the following set of expressions

effect(L) « shoot(X), not loaded inertial(loaded)
moving(X) «— not dead(X) inertial(dead(X))
effect(dead(X) «— hit(X)) < shoot(X) effect(loaded) «— load

effect(hit(X) < not missed(X)) « shoot(X) effect(bang) «— shoot(X)
effect(missed(X) < not hit(X)) < shoot(X) effect(not loaded) «— shoot(X)

Let us analyze this EAP. The first rule encodes the impossibility to execute
the action shoot(X) when the gun is unloaded. The static rule moving(X) «

62 J.J. Alferes, F. Banti, and A. Brogi

not dead(X) implies that, for any turkey X, moving(X) is true if dead(X) is
false. Since this is the only rule for moving(X), it further holds that moving(X)
is true iff dead(X) is false. Notice that declaring moving(tk) as inertial, would
result, in our description, in the possibility of having amoving dead turkey! This
is why fluents moving(X) have not been declared as inertial. In fact, suppose we
insert inertial(moving(X)) in the EAP above. Suppose further that moving(tk)
is true at state s, that one shoots at tk and kills it. Since moving(tk) is an inertial
fluent, in the resulting state dead(tk) is true, but moving(tk) remains true by
inertia. Also notable is how effects that last only for one state, like the noise
provoked by the shoot, are easily encoded. The last three dynamic rules on the
left encode a non deterministic behaviour: each shoot action can either hit and
kill a turkey, or miss it.

To see how this EAP encodes the desired behaviour of this domain, consider
the following example of evolution. In this example, to lightening the notation,
we omit the negative literals belonging to interpretations. Let us consider the
initial state {} (which means that all fluents are false). The state will remain
unchanged until some action is performed. If one load the gun, the program is
updated with the external event {load}. In the unique successor state, the fluent
loaded is true and nothing else changes. The truth value of loaded remains then
unchanged (by inertia) until some other action is performed. The same applies
to fluents dead(X). The fluents bang, missed(X), and hit(X) remain false by
default. If one shoots at a specific turkey, say Smith, and the program is updated
with the event shoot(smith), several things happen. First, loaded becomes false,
and bang becomes true, as an effect of the action. Moreover, the rules:

hit(smith) < not missed(smith).
missed(smith) < not hit(smith).
dead(smith) «— hit(smith).

are considered as rules of the domain for one state. As a consequence, there are
two possible resulting states. In the first one, missed(smith) is true, and all
the others fluents are false. In the second one hit(smith) is true, missed(smith)
is false and, by the rule dead(smith) «— hit(smith), the fluent dead(smith)
becomes true. In both the resulting states, nothing happens to the truth value
of the fluents dead(X), hit(X), and dead(X) for X # smith.

4 Relationship to Existing Action Languages

In this section we show embeddings into EAPs of the action languages B and
(the definite fragment of) C2. We will assume that the considered initial states
are consistent wrt. the static rules of the program, i.e. if the body of a static
rule is true in the considered state, the head is true as well.

2 The embedding of language A is not explicitly exposed here since A is a (proper)
subset of the B language.

From Logic Programs Updates to Action Description Updates 63

Let us consider first the B language. The basic ideas of static and dynamic
rules are very similar in B and in EAPs. The main difference between the two is
that in B all the fluents are inertial, whilst in EAPs only those that are declared
as such are inertial. The translation of B into EAPs is then straightforward: All
fluents are declared as inertial and then the syntax of static and dynamic rules is
adapted. In the following we use, with abuse of notation, Body and C'ond both
for conjunctions of literals and for sets of literals.

Definition 8. Let P be any action program in B with set of fluents F.
The translation B(P,F) is the pair (I® @ DBY FB) where: FB = F, 1P =
initialize(F) and DB contains exactly the following rules:

— inertial(Q) for each fluent Q € F

— a rule F < Body for any static rule F' 1f Body in P.

— a rule effect(F) «— A, Cond. for any dynamic rule A causes F if Cond
m P.

Theorem 2. Let P be any B program with set of fluents F, (I® © DBF F)
its translation, s a state and K any set of actions. Then s’ is a resulting state
from s given P and the set of actions K iff it is a resulting state from s given
I2 @ DBP and the set of actions K.

This theorem makes it clear that there is a close relationship between FAPs
and the B language. In practice, EAPs generalize B by allowing both inertial
and non inertial fluents and by admitting rules, rather then simply facts, as
effects of actions.

Let us consider now the action language C. Given a complete description of
the current state of the world and performed actions, the problem of finding
a resulting state is a problem of the satisfiability of a causal theory, which is
known to be Z?D—hard (cf. [15]). So, this language belongs to a category with
higher complexity than EAPs whose satisfiability is NP-complete. However, only
a fragment of C is implemented and the complexity of such fragment is N P. This
fragment is known as the definite fragment of C [15]. In this fragment, static rules
are expressions of the form caused F' if Body where F' is a fluent literal and
Body is a conjunction of fluent literals, while dynamic rules are expressions of
the form caused not F' if Body after Cond where Cond is a conjunction of
fluent or action literals® For this fragment it is possible to provide a translation
into EAPs.

The main problem of the translation of C into EAPs lies in the simulation
of causal reasoning with stable model semantics. The approach followed here
to encode causal reasoning with stable models is in line with the one proposed
n [21]. We need to introduce some auxiliary predicates and define a syntactic

3 The definite fragment defined in [15] is (apparently) more general, allowing Cond
and Body to be arbitrary formulae. However, it is easy to prove that such kind of
expressions are equivalent to a set of expressions of the form described above.

64 J.J. Alferes, F. Banti, and A. Brogi

transformation of rules. Let F be a set of fluents, and let F€ denote the set of
fluents F U {Qn | @ € F}. We add, for each Q € F, the constraints:

«— not Q,not Qn. (4)
Let @ be a fluent and Body = F1, ... , Fj, a conjunction of fluent literals. We will
use the following notation: @ = not Qn, not Q = not Q and Body = F},... , F,

Definition 9. Let P be any action program in the definite fragment of C with
set of fluents F. The translation C(P,F) is the pair (I¢ & D FC) where:
FC is defined as above, I¢ = initialize(FC) and DT consists exactly of the
following rules:

— a rule effect(Q < Body) « Cond, for any dynamic rule in P of the form
caused @ if Body after Cond;

— a rule effect(Qy « Body) « Cond, for any dynamic rule in P of the form
caused not Q if Body after Cond;

— a rule Q «— Body, for any static rule in P of the form caused Q if Body;

— a rule QN «— Body, for a static rule in P of the form caused not Q) if Body;

— The rules (4) and (5), for each fluent Q € F.

For this translation we obtain a result similar to the one obtained for the
translations of the B language:

Theorem 3. Let P be any action program in the definite fragment of C with set
of fluents F, (I @ DCP FC) its translation, s a state, s the interpretation
over FC defined as follows: s = sU{Qn | Q € s}U{not Qn | not Q € s}
and K any set of actions. Then s* is a resulting state from s€ given I¢ @ DCP
and the set of actions K iff there exists s’ such that s’ is a resulting state from
s, given P and the set K and s* =5, §'.

By showing translations of the action languages B and the definite fragment
of C into EAPs, we proved that EAPs are at least as expressive as such languages.
Moreover, the translations above are quite simple: basically one EAP static or
dynamic rule for each static or dynamic rule in the other languages. The next
natural question is: Are they more expressive?

5 Updates of Action Domains

Action description languages describe the rules governing a domain where actions
are performed, and the environment changes. In practical situations, it may
happen that the very rules of the domain change with time too. When this
happens, it would be desirable to have ways of specifying the necessary updates
to the considered action program, rather than to have to write a new one. EAPs

From Logic Programs Updates to Action Description Updates 65

are just a particular kind of Evolp sequences. So, as in general Evolp sequences,
they can be updated by external events.

When one wants to update the existing rules with a rule 7, all that has to
be done is to add the fact assert(r) as an external event. This way, the rule
T is asserted and the existing Evolp sequence is updated. Following this line,
we extend EAPs by allowing the external events to contain facts of the form
assert(t), where 7 is an Evolp rule, and we show how they can be used to
express updates to EAPs. For simplicity, below we use the notation assert(R),
where R is a set of rules, for the set of expressions assert(r) where 7 € R.

To illustrate how to update an EAP, we come back to Example 1. Let I & D
be the EAP defined in there. Let us now consider that after some shots, and
dead turkeys, rubber bullets are acquired. One can now either load the gun with
normal bullets or with a rubber bullets, but not with both. If one shoots with a
rubber loaded gun, the turkey is not killed.

To describe this change in the domain, we introduce a new inertial fluent
representing the gun being loaded with rubber bullets. We have to express that,
if the gun is rubber-loaded, one can not kill the turkey. For this purpose we
introduce the new macro:

not effect(F «— Body) « Cond.

where F', is a fluent literal, Body is a set of fluents literals and C'ond is a set of
fluent or action literals. We refer to such expressions as effects inhibitions. This
macro simply stands for the rule

assert(not event(F <« Body)) « Cond.

where event(F «— Body) is as before. The intuitive meaning is that, if the
condition C'ond is true in the current state, any dynamic rule whose effect is the
rule F' < Body is ignored.

To encode the changes described above, we update the EAP with the external
event E; consisting of the facts assert(l;) where

I, = (initialize(rubber_loaded))

Then, in the subsequent state, we update the program with the external update
Ey = assert(D;) where D is the set of rules*

inertial(rubber_loaded).

effect(rubber_loaded) — rubber_load.

effect(not rubber_loaded) — shoot(X).

effect (L) « rubber_loaded, load.

effect(L) « loaded, rubber_load.

not effect(dead(X) «— hit(X)) « rubber_loaded.

* In the remainder, we use assert(U), where U is a set of macros (which are themselves
sets of Evolp rules), to denote the set of all facts assert(r) such that there exists a
macro n in U with 7 € n.

66 J.J. Alferes, F. Banti, and A. Brogi

Let us analyze the proposed update. First, the fluent rubber_loaded is ini-
tialized. It is important to initialize any fluent before starting to use it. The
newly introduced fluent is declared as inertial, and two dynamic rules are added
specifying that load actions are not executable when the gun is already loaded
in a different way. Finally we use the new command to specify that the ef-
fect dead(X) < hit(X) does not occurs if, in the previous state, the gun was
loaded with rubber bullets. Since this update is more recent than the original
rule effect(dead(X) «— hit(X)) <« shoot(X), the dynamic rule is updated.

Basically updating the original EAP with the rule

not effect(dead(X) «— hit(X)) « rubber_loaded.

has the effect of adding not rubber_loaded to the preconditions of the dynamic
rule
effect(dead(X) « hit(X)) < shoot(X).

So far we have shown how to update the preconditions of a dynamic rule. It
is also possible to update static rules and the descriptions of effects of actions.
Suppose the cylinder of the gun becomes dirty and, whenever one shoots, the
gun may either work properly or fail. If the gun fails, the action shoot has no
effect. We introduce two new fluents in the program with the event assert(Is)
where I = initialize(fails, work)). Then, we assert the event Ey = assert(Dsz)
where D is the following EAP

effect(fails — not work) «— shoot(X).
effect (work < not fails) « shoot(X).
not missed(X) «— fails.
not hit(X) « fails.
not bang «— fails.
effect(loaded «— fails) < loaded.
effect (rubber_loaded «— fails) « rubber_loaded.

The first two dynamic rules simply introduce the possibility that a failure
may occur every time we shoot. The three static rules describe changes in the
behaviour of the environment when the gun fails, and amount to negate what was
entailed by static and dynamic rules in D. The last two dynamic rules update
two of the dynamic rules in D and D1, respectively. These rules specify that,
when a failure occurs, the gun remain loaded with the same kind of bullet. Since
the new rules of Dy are more recent than the rules in D and D, they update
these latter ones.

This last example shows how to update static and dynamic rules with new
static and dynamic rules. To illustrate how this is indeed achieved in this exam-
ple, we now show a possible evolution of the updated system. Suppose currently
the gun is not loaded. One loads the gun with a rubber bullet, and then shoots
at the turkey named Trevor. The initial state is {}. The first set of actions is
{rubber_load} The resulting state after this action is s’ = {rubber_loaded}. Sup-
pose one performs the action load. Since the EAP is updated with the dynamic

From Logic Programs Updates to Action Description Updates 67

rule effect(L) « rubber_loaded, load. there is no resulting state. This happens
because we have performed a non executable action. Suppose, instead, that the
second set of actions is {shoot(trevor)}. In this case there are three possible
resulting states. In one the gun fails and, in it, the resulting state is again s’. In
the second, the gun works but the bullet misses Trevor. In this case, the result-
ing state is s{ = {missed(trevor)}. Finally, in the third, the gun works and the
bullet hits Trevor. Since the bullet is a rubber bullet, Trevor is still alive. In this
case the resulting state is s = {hit(trevor)}.

The events may introduce changes in the behaviour of the original EAP. This
opens a new problem. In classical action languages we do not care about the pre-
vious history of the world: If the current state of the world is s, the computation
of the resulting states is not affected by the states before s. In the case of EAPs
the situation is different, since external updates can change the behaviour of the
considered EAP. Fortunately, we do not have to care about the whole history
of the world, but just about those events containing new initializations, inertial
declarations, effects inhibitions, and static and dynamic rules.

It is possible to have a compact description of an EAP that is updated sev-
eral times via external events. For that we need to further extend the original
definition of EAPs.

Definition 10. An updated Ewvolp action program over (F,A) is any sequence
I®D1®...®D, where I is initialize(F), and the various Dy, are sets consisting
of static rules, dynamic rules, inertial declarations and effects inhibitions such
that any fluent appearing in Dy belongs to F.

Definition 11. Let I & D1 & ... & D,, be any updated FAP and s a state of
the world. Then s’ is a resulting state from s given I & D1 & ... ® D,, and the
sequence of sets of actions Ky ..., K, iff there exists an evolving stable model
My,...,M, of I®& D1 &...® D, given the external events (sUKy),..., K,,0
such that ' =5 M,,.

In general, if we updated an Evolp action program [® D with the subsequent
events assert(I1), assert(D;), where I1 @& D; is another EAP, we obtain the
equivalent updated Evolp action program (I UI;) @ D @ D; Formally:

Theorem 4. Let \UI®Dy® D1 ®...0 Dy, be any update EAP over (F, A). Let
@D E! be a sequence of events such that: By = K1 U s, where s is any state of
the world and K1 is any set of actions; and the others E;s are any set of actions
K,, or any set assert(initialize(F3)) where | Fz = I, or any assert(D;) with
1<i<k. Letsy,...,s, beasequence of possible resulting states from s given the
EAP Iy® Dy and the sequence of events @ E" and K11 a set of actions. Then
S1y...,5n,8 18 a resulting state from s given Iy @ Dgy and the sequence of events
P E!® Knq1 iff s is a resulting state from s, given [yUI @ Do @® D1 @ ... Dy,
and the set of actions Kpy1.

By applying this theorem we can, for instance, simplify the updates to the
original EAP of the example in this section into the updated EAP Iy, & D @
D1 ® Do, where Iy, =1 U Iy U Iy, I and D are as in Example 1, and the I;s
and D;s are as described above.

68 J.J. Alferes, F. Banti, and A. Brogi

Yet one more possibility opened by updated Evolp action programs is to cater
for successive elaborations of a program. Consider an initial problem described
by an EAP I&D. If we want to describe an elaboration of the program, instead of
rewriting I ® D we can simply update it with new rules. This gives a new answer
to the problem of elaboration tolerance [25] and also open the new possibility of
automatically update action programs by other action programs.

The possibility to elaborate on an action program is also discussed in [15]
in the context of the C language. The solution proposed there, is to consider C
programs whose rules have one extra fluent atom in their bodies, all these extra
fluents being false by default. The elaboration of an action program P is the
program P U U where U is a new action program. The rules in U can defeat
the rules in P by changing the truth value of the extra fluents. An advantage of
EAP over that approach is that in EAPs the possibility of updating rules is a
built-in feature rather then a programming technique involving manipulation of
rules and introduction of new fluents. Moreover, in EAPs we can simply encode
the new behaviours of the domain by new rules and then let these new rules
update the previous ones.

6 Conclusions and Future Work

In this paper we have explored the possibility of using logic programs updates
languages as action description languages. In particular, we have focused our
attention on the Evolp language [2]. As a first point, we have defined a new
action language paradigm, christened Evolp action programs, defined as a macro
language over Evolp. We have provided an example of usage of this language, and
compared Evolp action programs with action languages 4, B and the definite
fragment of C, by defining simple translations into Evolp of programs in these
languages. Finally, we have also shown and argued about the capability of EAPs
to handle changes in the domain during the execution of actions.

Though all the results in this paper refer to the update language Evolp, it is
not our stance that these could not be obtained if other LP update languages
were used instead. For recasting (some) of the results in other LP update lan-
guages, one would have to resort to established relationships between the various
LP update languages, such as the ones found in [2,19]. Also, the possibility of
handling changes in the domain shown by EAPs, could in principle be obtained
if, instead of Evolp, another update language with the capability of updating
update rules were used instead. Another LP update language with this capabil-
ity is the KABUL language defined in [19]. However, the study of which of the
existing LP update languages could be used as action description languages, in
a way similar to what is described here for Evolp, is outside the scope of this pa-
per, and would, in our opinion, fit better in a paper with a focus on relationship
among various LP update languages. Our goal in this paper was to show that
(at least) one LP update language can be used for describing effects of actions,
and can be formally compared with existing action description languages. This
goal was achieved by showing exactly that for the language Evolp.

From Logic Programs Updates to Action Description Updates 69

Several important topics are not touched here, and will be subject of future

work. Important fields of research are how to deal, in the Evolp context, with
the problem of planning prediction and postdiction [24], when dealing with in-
complete knowledge of the state of the world. Yet another topic involves the
possibility of concurrent execution of actions. Nevertheless, we have not fully
explored this topic, and confronted the results with extant works [6, 18].

The development of implementations for Evolp and EAPs is another neces-

sary step. Finally EAPs have to be tested in real and complex contexts.

References

1.

10.

11.

12.

13.

14.

J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: a principled based approach. In 7th Int. Conf. on Logic Programming
and Nonmonotonic Reasoning (LPNMR-7), volume 1730 of LNAI Springer, 2004.
J. J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In
S. Flesca, S. Greco, N. Leone, and G. lanni, editors, 8th European Conf. on Logics
in AI (JELIA’02), volume 2424 of LNAI, pages 50-61. Springer, 2002.

J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic
Programming, 45(1-3):43-70, September/October 2000.

J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A
language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.

J. J. Alferes, L. M. Pereira, T. Przymusinski, H. Przymusinska, and P. Quaresma.
Preliminary exploration on actions as updates. In M. C. Meo and M. V. Ferro,
editors, Joint Conference on Declarative Programming (AGP-99), 1999.

C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Journal
of Logic Programming, 31:85-118, 1997.

C. Baral, M. Gelfond, and Alessandro Provetti. Representing actions: Laws, ob-
servations and hypotheses. Journal of Logic Programming, 31, April-June 1997.
F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-
tance. In D. De Schreye, editor, Proceedings of the 1999 International Conference
on Logic Programming (ICLP-99), Cambridge, November 1999. MIT Press.

. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A framework for declarative

update specifications in logic programs. In Bernhard Nebel, editor, Proceedings
of the seventeenth International Conference on Artificial Intelligence (IJCAI-01),
pages 649-654, San Francisco, CA, 2001. Morgan Kaufmann Publishers, Inc.

T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics
based on causal rejection. Theory and Practice of Logic Programming, 2:711-767,
November 2002.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. A. Bowen, editors, 5th International Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Representing actions and change by logic programs.
Journal of Logic Programming, 17:301-322, 1993.

M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on Al 16,
1998.

E. Giunchiglia, J. Lee, V. Lifschitz, N. Mc Cain, and H. Turner. Representing ac-
tions in logic programs and default theories: a situation calculus approach. Journal
of Logic Programming, 31:245-298, 1997.

70

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

J.J. Alferes, F. Banti, and A. Brogi

E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153:49-104, 2004.

E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI’98, pages 623—630, 1998.

M. Homola. Dynamic logic programming: Various semantics are equal on acyclic
programs. In this volume.

J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In
William Nebel, Bernhard; Rich, Charles; Swartout, editor, Proc. IJCAI-03, pages
1079-1084, Cambridge, MA, 2003.

J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-
ligence and Applications. 10S Press, 2003.

J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. In
LPKR’97: workshop on Logic Programming and Knowledge Representation, 1997.
V. Lifschitz. The Logic Programming Paradigm: a 25-Year Perspective, chapter
Action languages, answer sets and planning, pages 357-373. Springer Verlag, 1999.
V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (pre-
liminary report). In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of
the 3th International Conference on Principles of Knowledge Representation and
Reasoning (KR-92). Morgan-Kaufmann, 1992.

John Wylie Lloyd. Foundations of Logic Programming. Springer,, Berlin, Heidel-
berg, New York,, 1987.

J. McCarthy. Programs with commons sense. In Proceedings of Teddington Con-
ference on The Mechanization of Thought Process, pages 75-91, 1959.

J. McCarthy. Mathematical logic in artificial intelligence, pages 297-311. Daedalus,
1988.

S. Russel and P. Norvig. Artificial Intelligence A Modern Approach. Artificial
Intelligence. Prentice Hall, 1995.

D. McDermott S. Hanks. Nonmonotonic logic and temporal projection. Artificial
Intelligence, 33:379-412, (1987).

A Proofs

Before presenting the proofs of the results in this paper, we present an alternative
definition of the transition function of EAPs, and prove its equivalence to the
original definition (Definition 6). We do so because in some proofs it is more
convenient to use this alternative definition.

In this alternative definition, and in its prove, we will use the notation S|z

to denote the restriction of the set S to the literals in the set Z i.e., to denote
SNZT.

Theorem 5. Let I & D be any FAP, s a state of the world and K a set of
actions. Let R be the set of static rules in D, I the following set of fluent literals

I={QeF: inertial(Q) € D}U{not Q: Q€ F: inertial(Q) € D}

and D(s, K) be the following set of rules:

D(s,K) = {7 : effect(tr) — Cond € D NK Us |= Cond}

From Logic Programs Updates to Action Description Updates 71

Then s’ is a resulting state from s given I & D and the set of actions K iff

s’ =least ((sNs'NI) UDefault(s',RUD(s,K))|F\7) UD(s,K) UR)
(6)

Proof. By Definition 6, s’ is a resulting state from s given I & D and the set
of actions K iff there exists an evolving stable model My, s* of I & D given the
external events s U K, () such that s’ = s*. An interpretation M is an evolving
stable model of I @& D given the external events s U K iff M; is a refined stable
models of I ® DUsUK i.e.,

M, =least (IUDUsUK)\ Rej*(My,I ® DUK Us)U Default(My))

All the atoms of the form event(7) where 7 is the effect of a dynamic rule
are false by default in I @ D U K U s. Hence the rules of the form (1) and (3),
which have those atoms in their bodies, play no role when calculating the least
model. Also all the literals of the form prev(Q), where @ is a fluent literal, are
false by default, and so the rules of the form @ < prev(Q) play no role either.
Since the initial (starting) state s is always assumed consistent wrt. the static
rules, there is no conflict between the static rules in D. Thus, static rules do not
reject any literal in s nor do they infer any fluent literal that does not belong to
s. So, we can simplify the expression above in the following way:

My =least (D*UsUK) U Default(My))

where D* is the set of all rules the form
assert(event(r)) « Cond.

for which there is a dynamic rule effect(7) < Cond in D, union with the set of
all rules of the form

assert(prev(Q)) «— Q. assert(not prev(Q)) «— not Q.

for every @ such that inertial(Q) belongs to D.

Hereafter, for sake of simplicity, in interpretations we omit the negative lit-
erals of the form not A whenever A is an auxiliary atom or an action literal. In
other words, we omit not A whenever A ¢ F. Moreover, by Prev(s) we denote
the set of literals which are either of the form prev(F) where F is a fluent literal
that is declared as inertial in D and is true in s, or of the form not prev(F’) where
F'is a fluent literal that is declared as inertial in D and is false in s. Finally, by
ED(s, K) we mean the set of literals event(r) such that

assert(event(r)) « Cond.

belongs to D and s U K = Cond.
Given this, it is easy to see that the trace associated with any evolving inter-
pretation My, s* is the sequence J : I @® D & Prev(s) U ED(s, K). So, My, s*

72 J.J. Alferes, F. Banti, and A. Brogi

is an evolving stable model of I @& D given the sequence of events K,) iff s* is a
refined stable model of 7.

Let s* be any interpretation over the language of I ¢ D, and s’ = s*|z. To
prove the theorem, we simply have to prove that s* is a refined stable model of
J iff ¢’ satisfies the equivalence (6). By definition of refined stable model, s* is
a refined stable model of J iff

s* =least (I UD U Prev(s) U D(s,K)) \ Rej®(s*) U Default(s*))

= Assume that s* is a refined stable model of 7. To prove that s’ satisfies the
equivalence, we start by simplifying the expression above defining s*.

Let s’ = s%. Since s’ only has fluent literals, the dynamic rules and the
inertial declarations in D play no role in verifying the equivalence. Hence, the
only rules we are interested in are the static rules in R. Moreover, since s*
is two valued, there is no mutual rejection between the rules in R: otherwise
there would be a fluent literal @ such that all the rules with head @ or not @@
would be rejected, and such that not @ would not be in the set De fault(s*)
as well. In such a case, neither @ nor not Q would be in s* which would
contradict the two valuedness of s*. Finally, by partially evaluating the facts
in ED(s, K), in the rules of the form

F «— Body, event(F < Body).

we can delete the atoms event(r) from the body of those rules whenever
event(r) € ED(s, K), and delete one such rule when event(r) ¢ ED(s, K).
With this, we can simplify the equivalence for s’ into:

s’ = least (I \ Rej®(s*) U Prev(s) UR U D(s, K) U Default(s*))

We can split the set of default assumptions into two subsets: the one con-
cerning the inertial fluent literals; and the one concerning the fluent literals
that are not inertial. Taking this splitting in consideration, the equivalence
for s’ becomes:

2S ok *
o — least <I \ Rej”(s*) U Prev(s) U De fault(s*)|z U>

R U D(s, K) U Default(s*)|r,\1)

where Default(s*) stands for Default(s*,I ® RU D(s, K))|F,\1). Notice
that the expression Default(s*,1 & R U D(s, K))|F,\z) is equivalent to
Default(s', RU D(s, K))|(#,\z)- Moreover, the expression De fault(s*)|z is
equivalent to Default(s’,s UR U D(s, K))|(z). Let Inherit(s) be the set of
rules:

Inherit(s*) = {Q € F : Q — prev(Q) € I\ Rej®(s*) A prev(Q) € Prev(s)}

What remains to show in order to prove that s’ satisfies the equivalence (6)
is that
Inherit(s*) U Default(s*)|z = (snNs' NT)

From Logic Programs Updates to Action Description Updates 73

For showing this, we consider separately the negative and the positive fluent
literals. Let @ be a fluent literal that belongs to (s N s’ NZ). We want to
prove this is equivalent to say that Q « prev(Q) belongs to I\ Rej®(s*)
and that Prev(Q) € Prev(s) i.e., we want to prove that Q € Inherit(s*).

The literal @ belongs to (sNs'NI) iff Q € Z, not Q & s and not Q & s'.
This implies that there exists no rule in RUD(s, K) whose head is not @ and
whose body is true. So, the rule Q « prev(Q) belongs to I\ Rej(s*) and,
by Q € s and by definition of Preuv(s), we conclude that Prev(Q) € Prev(s).
Let assume now Q « prev(Q) belongs to I\ Rej®(s*), then there exists
no rule in R U D(s, K) whose head is not @ and whose body is true. If,
furthermore, Prev(Q) € Prev(s), then not Q ¢ Default(s*) and so not @ is
not derived by any rule nor by default assumption. Thus, not Q € s’ and so
Q € s. Moreover, by definition if prev(Q) € Prev(s) then Q € s and Q € 7.
So, we have proved that

Qe(snNs'NI) e Q «— prev(Q) € I\ Rej®(s*) A prev(Q) € Prev(s)

Let us now consider the negative fluent literals. In this case we want to prove
that, for any inertial fluent, the following equivalence holds.

not Q € (sNs') < not Q € Default(s’,s URUD(s,K))|F

We know not Q € s’ iff Q ¢ s’, which, since s’ is a model of R U D(s, K),
implies that there exists no rule in R U D(s, K) whose head is) and whose
body is satisfied by s’. This, together with the fact that @ ¢ s, by definition
of Default implies that not @Q € Default(s’,s UR U D(s, K)), as desired.
Let us now suppose that s’ satisfies the equivalence (6). i.e.

s’ =least ((sNs'NI) UDefault(s',RUD(s,K))|(Fr,\z) UD(s, k) UR)

Let NED be the set of literals of the form —event(r) such that event(r) €
ED(s,K) and there is no dynamic rule of the form effect(r) «— Cond
such that s’ satisfies Cond. Let s’ be the following evolving interpretation
(again we omit in the interpretation, the negative literals which are not fluent
literals).

s*=¢" U Prev(s) U ED(s,K) UNED Uassert(ED(s',K)) U
U assert(Prev(s))’

We have to prove that s* is a refined stable model of 7. We start this proof
by showing that

Inherit(s*) U Default(s*)|z = (sNs' NI)

We start by assuming that @ is a fluent literal in (sNs'NZ). @ is such a fluent
iff Prev(Q) € Prev(s), and not Q ¢ s'. Since s’ is a model of R U D(s, K),
we conclude that there exists no rule in R U D(s, K) with head not () and
true body in s’'. Thus, the rule Q « prev(Q) € I\ Rej®(s*), and hence
Q € Inherit(s*).

74 J.J. Alferes, F. Banti, and A. Brogi

Let assume now Q € Inherit(s*) (i.e. Q « prev(Q) € I\ Rej®(s*) and
prev(Q) € Prev(s)) then @ € s. This implies that not Q ¢ s, @ € Z, and
there exists no rule in R U D(s, K) with head @ whose body is true in s'.
Consequently, not Q € s’ (i.e. Q € §'), and finally Q € (sNs' NI).

Let us now consider the negative fluent literals. We want to prove that, for
any inertial fluent, the following equivalence holds.

not Q € (sNs') < not Q € Default(s’',s URU D(s, K))|F
The proof proceeds in the same way as above, in order to conclude that
Inherit(s*) U Default(s*)|z = (sNs' NT)
We obtain then the following equivalence

& — least Inherit(s*) U De fault(s*)|z U
o De fault(s’, RU D(s,K))|r,\z) UD(s,k) UR

which is equivalent to
s = least (Inherit(s*) U Default(s*) UD(s,k) UR)|x,

Since s’ is consistent wrt. D(s, K) and R, these sets of rules do not contain
any pair of rules with conflicting heads and whose bodies are both true in
s'. So, by replacing Inherit(s*) with Prev(s) U I\ Rej®(s*) we obtain

s’ =least ((I1UD(s, K) UmR) \ Rej®(s*) U Default(s*)) | £,
and from this, and by considering the definition of s*

s* =least ((I UD U Prev(s) UD(s, K)) \ RejS(s*) U De fault(s*))
This equation is, by definition, equivalent to say that M, s* is an evolving
stable model of I @& D given the sequence of events K,). In other words, s’
is a resulting state from s given I & D and the set of actions K.

In the extreme cases where the set of inertial fluents coincides with the whole
set of fluents and, when the set if inertial fluents is empty, we obtain two sim-
plifications of the equivalence (6).

Corollary 1. Let I & D be any FEAP, s a state of the world and K a set of
actions. Let R, D(s,K) be as in theorem 5. Moreover let every fluent be an
wnertial fluent. Then s’ is a resulting state from s given I ® D and the set of
actions K iff

s’ =least(sNs') UD(s,k) UR)

Proof. Follows trivially as a special case of theorem 5.

From Logic Programs Updates to Action Description Updates 75

Corollary 2. Let I & D be any EAP, s a state of the world and K a set of
actions. Let R, D(s,K) be as in theorem 5. Moreover let the set of inertial
fluents be the empty set. Then s’ is a resulting state from s given I ® D and the
set of actions K iff s’ is a stable model of the logic program D(s, k) UR

Proof. 1t follows trivially as a special case of theorem 5 that
s' = least (De fault(s',RU D(s, K))|(z,\7) UD(s,k) UR)
As proved in [19] this amount to say s’ is a stable model of D(s, k) UR.

Having shown this alternative to the definition of the transition function of
EAPs, and proven its equivalence to the original Definition 6, we are now ready
to prove all of the theorems (that we recall here, for the sake of readability) in
this paper.

Theorem 1 (Complexity of EAPs). Let I & D be any EAP over (F, A), s
a state of the world and K C A. To find a resulting state s’ from s given I & D
and the set of actions K is an NP-complete problem.

Proof. By corollary 2, and given that the problem of finding a stable model of a
program is NP-hard, we conclude that finding a resulting state s’ from s given
I & D and the set of actions K is an NP-hard problem.

As for membership, from theorem 5 and from the observation that the com-
putation of least(P), where P is a logic program, is polynomial wrt. the number
of rules in P (since least(P) is the least Herbrand model of P considering the
negative literals in P as new atoms), it follows that checking whether a given
state s’ is resulting state is a polynomial problem wrt. the number of rules in
I ® D plus the number of elements in F U A. Hence, the problem of finding a
resulting state s’ from s given I @ D and the set of actions K is NP.

Theorem 2 (Relation to B). Let P be any B program with set of fluents F,
(IB @ DBP | F) its translation, s a state and K any set of actions. Then s’ is a
resulting state from s given P and the set of actions K iff it is a resulting state
from s given I® @ DBY and the set of actions K.

Proof. Tt trivially follows from corollary 1.

Theorem 3 (Relation to C). Let P be any action program in the definite
fragment of C with set of fluents F, (I€ @ DT FC) its translation, s a state,
sY the interpretation over FC defined as follows: s = sU{Qn | Q € s}U
{not Qn | not Q@ € s} and K any set of actions. Then s* is a resulting state
from s¢ given I¢ @ DT and the set of actions K iff there exists s' such that s’
is a resulting state from s, given P and the set K and s* =x, §'.

Proof. By corollary 2, s* is a resulting state from s given I¢ @ D" and the
set of actions K iff ¢’ is a stable model of the program RU D(s, K) where R and
D(s%,K) are defined as in theorem 5. From the translation of definite causal

76 J.J. Alferes, F. Banti, and A. Brogi

theories into logic programs presented in [15], it follows that this is equivalent
to say that s’ is a model of the causal theory obtained by all the static rules of
P plus the rules of the form caused J if H for which a dynamic rule

caused J if H after O

belongs to P and @ is true in s U K. This, in turn, is equivalent to saying that
s’ is a resulting state from s given P and the set of actions K, as desired.

Theorem 4 (Simplification of updated EAPs). Let ZzUI®Dy& D1 @...D
Dy, be any update EAP over (F, A). Let @ E” be a sequence of events such that:
FEy = K; U s, where s is any state of the world and K, is any set of actions;
and the others E;s are any set of actions K, or any set assert(initialize (F3))
where | JFz = 1, or any assert(D;) with 1 <i < k. Let s1,...,s, be a sequence
of possible resulting states from s given the EAP Iy @ Dy and the sequence of
events @ EI and K, 1 a set of actions. Then $1,...,8yn,s is a resulting state
from s given In® Dy and the sequence of events @ EI' ® Kp+1 iff s’ is a resulting
state from s, given IgUI @ Dy@ D1 ® ...® Dg and the set of actions K, 11.

Proof. The sequence si,...,S,,s is a sequence of possible resulting states iff
there exists a sequence of evolving interpretations My, My, ... M,, s* such that
Mylr = s, M;|x = s; and s*|x = §'. The trace of My, My, ... M,,s* is the DLP
In® Dyg&T,...® T, where each T;s is a set of literal of one of the following
forms:

T; = Aux;
T; = Aux; U initialize(F3)
T; = Aux; U D;] for some 0 < j <k

and Auz; is a set of auxiliary literals of the form Prev(Q) or not Prev(Q), where
@ is an inertial literal or event(7) or not event(r), T being the effect of some
dynamic rule.

To compute s*, the only relevant part of the trace is formed by the various
initialize(Fgs), Dys and the last set of auxiliary literals Auzx,,. Moreover, the
semantics does not change if we put the various initialize(Fps) in the first pro-
gram of the sequence, since a fluent only appears in a D; after being initialized.
Hence we can simplify the trace of My, My, ... M,,s* into:

IZwWuI®Dy®D1&...0 Dy UAux,
The set Aux,, can be split in three separate sets
Auzx,, = Prev(sy) U ED(s,, K)U Retract(sy)

where Prev(s,) and ED(sy, K) are as defined in the proof of theorem 5 and
Retract(sy,) is the set of all literals of the form not event(r) coming from dynamic
rules whose preconditions are true in s,_1 and false in s,,. The negative literals
in Retract(sy,) simply rejects facts of the form event(r) from Auz,,_1. Since we

From Logic Programs Updates to Action Description Updates 7

have already simplified the trace by erasing all the Auz;s with ¢ < n, we can
ignore the set Retract(sy,,). Thus, we obtain that s1, ... s’ is a sequence of possible
resulting states iff an interpretation s*, with s*|z, = ¢/, is a refined stable model
of zyUI®Dy® D1 P ... 0 Dy @ ED(sp, K) U Prev(sy). This is equivalent to
saying that s’ is a resulting state from s given Iy UI & Dy @ D1 & ... & Dy, and
the set of actions K, 11, as desired.

Dynamic Logic Programming: Various Semantics
Are Equal on Acyclic Programs

M. Homola

Comenius University, Bratislava, Slovakia
homola@tbc.sk

Abstract. Multidimensional dynamic logic programs (MDLPs) are suit-
able to represent knowledge dynamic in time, or more generally, informa-
tion coming from various sources, partially ordered by arbitrary relevancy
relation, e.g., level of authority. They have been shown useful for mod-
eling and reasoning about multi-agent systems. Various approaches to
define semantics of MDLPs have been presented. Most of the approaches
can be characterized as based on rejection of rules.

It is understood that on some restricted classes of MDLPs several of
these semantics coincide. We focus on acyclic programs. We show that
for a MDLP P and a candidate model M, if P is acyclic to some extent
then several of the known semantics coincide on M. It follows as a direct
consequence that on the class of acyclic programs all of these semantics
coincide.

1 Introduction

Background. In Multidimensional Dynamic Logic Programs (MDLPs), intro-
duced in [1], knowledge is encoded into several logic programs, partially ordered
by a relevance relation. MDLPs have been shown as well suited for represent-
ing knowledge change in time, and as well, to provide favourable representation
for reasoning over information structured by some relevancy relation, such as
authority hierarchies.

Already in [1], authors have shown that MDLPs are useful to model and rea-
son about multi-agent systems. Particularly in logic based multi-agent systems
where knowledge of an agent is naturally represented by rules. Thus, knowledge
associated with an agent at a given state is encoded into a logic program. As-
sume that the agent’s knowledge evolves with time. With each new time-state
new knowledge appears to the agent, in form of rules, perceived trough sensors
or communicated with other agents. This new knowledge may be in general con-
trary to the knowledge inherited from the previous time-states. We want the
agent to be able to resolve such conflicts, assigning more relevance to the more
recent knowledge.

MDLPs allow us to do this in a natural way. Agent’s initial state and sub-
sequent perceptions are modeled as a sequence of logic programs. More recent
information is treated asmore relevant. MDLPs assign semantics to the sequence,

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 78-95, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Dynamic Logic Programming 79

resolving conflicts between rules according to their relevancy. Moreover, they en-
able for determining semantics of the agent’s knowledge at arbitrary state, thus
allowing us to query the agent’s knowledge history.

Besides time, MDLPs are capable of handling other relevancy relations, like
specificity of the information or authority. This is particularly handy in multi-
agent communities where an authoritative hierarchy among the agents is present.
Assume that the knowledge of each agent is represented by a logic program. If an
agent is authoritatively superior to the another one, we treat also the program
of the former one as more relevant than the program of the latter one. Assuming
that the agents obey the authority, we are able to query the global knowledge
of the system but as well the knowledge of a subsystem rendered by an agent
together with all the agents that are inferior to it.

Moreover, the framework allows us to combine several “relevancy dimensions”
into a single MDLP. Thus, we are able to model, e.g., the knowledge distributed
over an authority-enabled community of agents and as well the change of the
whole system in time. Hence, we favor MDLPs as a powerful framework for
modeling and reasoning about knowledge distributed over multi-agent systems,
logic-based in particular. However, a multi-agent system does not have to be
associated with a single MDLP, nor the view provided by the MDLP has to
be global. For instance, each agent may use a MDLP to maintain its own view
of the system, reflecting its own preference amongst the chunks of information
obtained by communication with other agents. Thus, MDLPs may also provide
a local knowledge repository for each agent of the system. For a more detailed
analysis, we refer the reader to [3,1,11,12]. We also refer the reader to [13], in
order to see how extensions of MDLPs can benefit to multi-agent systems, and
to [14] to see how the knowledge of multiple agents can be combined when there
is no authoritative order among the agents.

Motivation. Various approaches have been presented in order to provide a
semantics of MDLPs. Most of these semantics are based on similar notions (e.g.,
generalization of stable model semantics, employing rejection of rules) and are
very close, one to another. Such semantics include P-Justified Update semantics
introduced in [2, 3], Dynamic Stable Model semantics from [4, 1], Update Answer
Set semantics from [5, 3] and Refined Dynamic Stable Model semantics of [6, 7].
(The latest one is only known for linearly ordered MDLPs.) Usually, a new
semantics has been introduced to cope with drawbacks of the older ones. Most
important contributions are those of Leite [3, 8], Eiter et al. [5,9] and Alferes et
al. [4,6].

Typically, semantics assigns a set of models to a program. Models are picked
among the interpretations of the program. Authors point out that for some
particular pairs of semantics, for a given MDLP, the model-set of one semantics
is always a subset of the model-set of the other one. Thus, a sort of hierarchy of
the model-sets assigned to a MDLP by different semantics is organized (cf. [3,
5,6,10]).

Studying the differences and similarities between these semantics, helps us to
evaluate them w.r.t. our intuitions. Perhaps we do not need such a rich family

80 M. Homola

of semantics, indeed if the difference between them shows to be very small.
Particularly, within the field of multi-agent systems, it helps us to determine
whether or not MDLPs are appropriate for a particular application, and if yes,
which semantics to choose.

Also, it is a shared opinion, that on “plain” MDLPs, which are not obfus-
cated with cyclic dependencies (cyclic chains of rules), conflicting rules within
a same logic program and other unconvenient constructs, all of these semantics
coincide. Different behavior on some “abnormal” MDLPs is usually assigned to
the inability of some of the semantics to deal with these abnormalities. Sev-
eral restrictive conditions on MDLPs have been introduced in order to identify
classes of programs on which two or more semantics coincide (cf. [3,5, 6]). From
this point of view, We find several results of [5, 3, 7], about restricted classes of
MDLPs on which some of the semantics coincide, not tight, as many MDLPs on
which the semantics also match are beyond the proposed classes.

We focus on a hypothesis that has been sketched already (cf. [5,3,7]), that
perhaps on MDLPs that do not contain cycles several of the semantics may
coincide. We see this hypothesis as valuable, since acyclic programs form a broad
subclass and it is known that for some, simpler, applications they are sufficient.
So, we suggest further evaluation of these semantics w.r.t. the class of acyclic
programs and programs with limited occurrence of cyclic dependencies.

Contribution. As in [3,15], we build MDLPs over a more general language of
generalized extended logic programs that unifies the previous approaches under
a common framework, allowing for more elegant comparisons, while keeping the
previous approaches as special cases, so the results are propagated.

We introduce a new concept of sufficient acyclicity. Logic program is suffi-
ciently acyclic if each of its literals is supported by at least one acyclic derivation.
As the main result we establish a restrictive condition, using the notion of suf-
ficient acyclicity, under which four (five) of the semantics coincide on the given
interpretation of the given MDLP (linear MDLP). It trivially follows that on
acyclic programs these semantics coincide entirely. This article presents the re-
sults of the author’s Master’s thesis [10] that can be viewed as its extended
version.

2 Preliminaries

We first introduce basic concepts from logic programming. Logic programs are
build from propositional atoms. The set of all atoms is denoted by A. We employ
two kinds of negation, explicit negation — and default negation not . Let p be
a proposition. By —p we intuitively mean that (we know that) A is not true.
Default negation is sometimes called negation as failure. We use it to express
lack of objective evidence: by not p we intuitively mean that we have no evidence
confirming that p is true.

An objective literal is an atom or an atom preceded by explicit negation
(e.g., A € A and — A are objective literals). A default literal is an objective

Dynamic Logic Programming 81

literal preceded by default negation (e.g., not A, not = A are default literals,
A € A). Both objective literal and default literal are literals. We denote the set
of all objective literals by O, the set of all default literals by D and the set of all
literals by L.

A rule is a formula L «— Lq,...,L,, where n > 0 and L,Lq,...,L, € L.
A rule of a form L «— (i.e., n = 0) is called a fact. For each rule r of a form
L« Ly,...,L, we call the literal L the head of r and denote it by h(r) and we
call the set {L1,..., Ly} the body of r and denote it by b(r).

A set of rules P is called a generalized extended logic program (logic program,
GELP). GELPs are the most general logic programs that we use. We favor
the approach outlined in [3,15], where MDLPs are built over GELPs, unifying
the previous approaches under a common framework, allowing for more elegant
comparisons, while keeping the previously used languages as special cases, so
the results are propagated. We also remark, that GELPs enable to properly
manipulate three truth values, “something is true”, “something is false”, and
“we do not know”, allowing to adequately switch from one to another, what we
mark as a desirable feature, once dealing with knowledge updates.

Several other flavours of logic programs do exist. We mention extended logic
programs, a subclass of GELPs formed by programs that do not contain default
literals in heads of rules. Generalized logic programs do not allow explicit nega-
tion at all, i.e., for each objective literal L, contained in the program, it holds
that L € A, and for each default literal not L, contained in the program, it holds
that L € A. A logic program is definite if it only contains atoms of A in the
heads, as well as in the bodies of its rules, i.e., definite logic programs do not
allow negation at all.

Let P be a GELP. The expanded version of P is the program P = P U
{not = h(r) < b(r) | r € P A h(r) € O}. Two literals L € O and not L are said
to be conflicting. Two rules are conflicting if their heads are conflicting literals.
We denote this by L x L' and by r X r’ respectively. For any set of literals S,
St=8N0O0and S~ =5nND.

A set of literals that does not contain a pair of conflicting literals is called
an interpretation. An interpretation is total if for each L € O it contains L or
not L. A literal L is satisfied in an interpretation I if L € I and we denote it by
ITE L. Also I F S, aset of literals S, if [E L for each L € S. A rule r is satisfied
in an interpretation I (denoted by I F r) if I E h(r) whenever I F b(r). Let P
be a definite logic program. We denote by least(P) the unique least model of P
that exists, as showed by van Emden and Kowalski in [16].

Most of the semantic approaches in dynamic logic programming build
on ideas of the stable model semantics of logic programs that has been
introduced by Gelfond and Lifschitz in [17]. According to this semantics a
total interpretation M is a stable model of a GELP P if it holds that
M = least(PUM™)t.

! With an abuse of notation, we commonly treat (sets of) literals as (sets of) facts, and
also GELPs as definite programs, considering each negated literal as a new atom.

82 M. Homola

3 MDLPs and Various Semantics Based on Rejection of
Rules

Logic programs have been proven useful in the area of knowledge representation.
As long as the information we deal with is rather static we face no problem to
encode it in form of a logic program. But we reach the barrier very soon, when
dealing with information change in time, or when integrating information from
several sources with various levels of relevancy.

To deal with this problem, the framework of dynamic logic programming has
been introduced in [4]. In this framework information is encoded into several
programs that are linearly ordered into a sequence by their level of relevancy.
Such sequences are called dynamic logic programs.

This framework has been further generalized in [1] by allowing logic pro-
grams ordered by arbitrary (i.e., also non-linear) partial ordering. Multidimen-
sional dynamic logic programs were born. We formalize the latter approach in
Definition 1.

Definition 1. Let G = (V, E) be a directed acyclic graph with finite set of ver-
tices V. Let P = {P; | i € V} be a set of logic programs. The pair (P,G) is a
multidimensional dynamic logic program or often just program or MDLP.

We often use just P instead of (P,G) and assume the existence of the cor-
responding G. The multiset of all rules of the expanded versions P; of the logic
programs P;, i € V of P is denoted by Up. Let i,j € V, we denote by 7 < j (and
also by P; < P;) if there is a directed path from ¢ to j in G. We denote by i < j
(and by P, < P;)if i < jorifi=j.

A dynamic logic program (DLP, linear MDLP) is such a MDLP P whose G
is collapsed into a single directed path. So, DLPs form a subclass of MDLPs,
they are precisely all linearly ordered MDLPs.

Most of the semantic approaches in dynamic logic programming are based on
the ideas of stable model semantics of simple logic programs. A set of models is
assigned to a program by each of these semantics. Models are picked among the
interpretations of the program.

As a MDLP in general may contain conflicting rules, semantics try to resolve
these conflicts, when it is possible, according to the relevancy level of the con-
flicting rules. A common approach is to assign a set of rejected rules to a given
program P and a “candidate model” interpretation M. Rejected rules are then
subtracted from the union of all rules of P, gaining the residue of P w.r.t. M.
Also the set of default assumptions (sometimes just defaults) is assigned to P
and M. Defaults are picked among the default literals. A fix-point condition is
verified, whether M coincides with the least model of the union of the residue
and the default assumptions. If so, then M is amodel of P w.r.t. the semantics.
A semantics that can be characterized in this manner is said to be based on
rejection of rules or rule-rejecting.

Once we deal with several rule-rejecting semantics, then any difference be-
tween them originates in the way how particularly rejection of rules and default

Dynamic Logic Programming 83

assumptions are implemented in these semantics. Two different kinds of rejection
have been used with MDLPs. The original rejection used in [4, 1] keeps each rule
intact as long as there is no reason for rejecting it in form of a more relevant rule
that is satisfied in the considered interpretation. Formally, the set of rejected
rules of P w.r.t. M is

Rej(P,M)={rc P, | (3r' € P;)i=<j,MEDb(r'),rxr'} .

In [5], an alternative notion of rejection has been introduced, allowing each
rule to reject other rules only if it is not rejected already. Such a set of rejected
rules of P w.r.t. M is formalized as

Rej(P,M)={re P, | 3" € P})i=<j,MEDB),rxr ¢ Rej(P,M)} .

Originally, in [2], default assumptions have been computed just exactly as in
the stable model semantics of logic programs. Formally,

Def*(P,M)=M" .

Later on, in [4,1], another approach has been introduced, as the original
set of defaults showed to be too broad. We formalize defaults according to this
approach as

Def(P,M)={notL|LeO,(Precup)h(r)=L,MEDb(r)} .

Combining two implementations of rejection and two of default assumptions
immediately leads to four semantics of MDLPs. We define each of them formally
in the following.

Definition 2. A rule-rejecting semantics that uses Rej(P, M) for rejection and
Def* (P, M) for defaults is called the dynamic justified update (DJU) semantics.
That is, a total interpretation M is a model of a MDLP P w.r.t. the DJU
semantics whenever M = least(Res(P, M) U Def (P, M)), where Res(P, M) =
Up \ Rej(P, M) is the residue.

The DJU semantics is the very first rule-rejecting semantics that has been
used in dynamic logic programming. If we restrict to DLPs build from generalized
logic programs, it is identical with the P-justified updates semantics of [2]. Soon
the original default assumptions showed to be too broad. In [4,1], they have
been replaced by Def (P, M). The semantics is formally defined as follows.

Definition 3. A rule-rejecting semantics that uses Rej(P, M) for rejection and
Def (P, M) for defaults is called the dynamic stable model (DSM) semantics. Or
equivalently, a total interpretation M is a model of a« MDLP P w.r.t. the DSM
semantics whenever M = least(Res(P, M) U Def (P, M)), where the residue is
as in Definition 2.

In [5], the alternative notion of rejection, Rej*(P, M), has been combined with
Def*(P, M) to produce semantics for DLPs build from extended logic programs.
The semantics has been originally called the update answer set semantics. In
our setting we formalize it in Definition 4.

84 M. Homola

Definition 4. A rule-rejecting semantics that uses Rej (P, M) for rejection and
Def* (P, M) for defaults is called the backward dynamic justified update (BDJU)
semantics. In other words, a total interpretation M is a model of a MDLP
P w.r.t. the BDJU semantics whenever M = least(Res (P, M) U Def (P, M)),
where Res* (P, M) = Up \ Rej (P, M) is the residue.

By the label “backward” we indicate use of Rej*(P, M) rejection, as the algo-
rithm for its computation from [5] traverses P in backward direction compared
to the one for Rej(P, M) found in [4,1]. In [3], the three above mentioned se-
mantics have been brought to a more general platform offered by GELPs. Also a
backward variant of the DSM semantics has been introduced, that we formalize
in Definition 5. In [3], this semantics is called the U-model semantics.

Definition 5. A rule-rejecting semantics that uses Rej (P, M) for rejection and
Def (P, M) for defaults is called the backward dynamic stable model (BDSM)
semantics. That is, a total interpretation M is a model of a MDLP P w.r.t.
the BDSM semantics whenever M = least(Res (P, M) U Def (P, M)), where the
residue is as in Definition 4.

The set of all models of a program P w.r.t. the DJU semantics is denoted
by DJU(P). Similarly, DSM (P), BDJU(P) and BDSM (P) are the sets of all
models according to the remaining three semantics.

We have presented four rule-rejecting semantics of MDLPs. The following
two examples taken from [3] show that each of this semantics is different.

Ezample 1. Let P = {P; < P2} where P, = {a «— }, P, = {nota «— nota}.
It holds that DSM(P) = BDSM(P) = {{a,not = a}}. But, for the other two,
DJU(P) = BDJU(P) = {{a, not ~a},{not a,not —a}}.

Ezample 2. Let P = {P, < P, < P3} where P, = {a «— }, P, = {nota « } and
P; = {a < a}. It holds that DJU(P) = DSM(P) = {{not a, not =a}}. On the
other hand, BDJU(P) = BDSM (P) = {{a, not = a},{not a,not —a}}.

Moreover, as it has been shown in [3], the sets of models assigned to arbitrary
program P, one set by each of these semantics, form a kind of hierarchy w.r.t.
the set inclusion relation. The DSM semantics is the most restrictive one, the set
of models w.r.t. DSM is always a subset of the other model-sets. On the other
hand, the set of models w.r.t. any semantics is always a subset of the one w.r.t.
BDJU, which always provides the broadest set of models. We summarize these
observations in Theorem 1 taken from [3].

Theorem 1. For each MDLP P it holds that

DSM(P) € DJU(P) C BDJU(P) ,
DSM (P) € BDSM(P) C BDJU(P) .

Dynamic Logic Programming 85
4 Equality on the Class of Acyclic Programs

We have shown in Examples 1 and 2 that the four rule-rejecting semantics are in
general distinct. However, many MDLPs exist, such as the one from Example 3,
on which these four semantics coincide.

Ezample 3. Let P = {P1,Py,P; | P, < P3,P, < P3}. Let P, = {a « },
P, = {nota «— } and P3 = {a « }. This simple MDLP can be viewed as
a model of a community of three agents, who take part in the hierarchy of
authorities. The first two of them are of incomparable authority and moreover,
they have conflicting knowledge. This conflict is resolved by the third one of
them, who is represented by logic program P; and its authority level is superior
to the former two. All of the four semantics agree with this intuition and assign
M = {a, not —a} to P as its single model.

Examples like this one lead us to a hypothesis that there probably are vast
classes of programs on which several semantics coincide. It shows that several
rule-rejecting semantics possibly behave equally on “plain” programs, that are
not obfuscated with cyclic dependencies among literals or other obstacles. Dif-
ferent behavior on such programs is supposed to be caused by different ability
of the semantics to deal with such obstacles.

To evaluate cyclic dependencies among literals in programs we adopt the
graph-theoretic framework introduced in [5]. An AND/OR-graph (N,C) is a
hypergraph, whose set of nodes N = N4 W Ng decomposes into the set of AND-
nodes N 4 and the set of OR-nodes No, and its set of connectors C = N x Ulli[(‘) Nt
is a function, i.e., for each I € N there is exactly one tuple (Oq,...,0) s.t.
(I,01,...,0;) € C. For any connector (I,01,...,0), I is its input node and
O1,...,0; are its output nodes.

Let (N,C) be an AND/OR-graph, I € N and (I,04,...,0;) € C. A tree p
is a path in (N, C) rooted in I if one of the following conditions holds:

(i) k>0AT € NaAp=(I,p1,...,Dk)s
(iii) k>0AT€NoAF)1<i<kAp=(I,p),

where p; is a path in (N, C) rooted in O;, 1 < i < k.

Let p = (I,p1,...,pr) be a path in an AND/OR-graph. A path p’ is a subpath
of pif p = p or p’ is a subpath of p; for some i, 1 < i < k. A path p in an
AND/OR-graph is said to be acyclic if for every subpath p’ (including p) rooted
in the node R, no subpath p” of p’ is rooted in R.

Definition 6. Let P be a logic program. An AND/OR-graph Gp = (N,C) is
associated with P if both of the following conditions hold:

(i) Ny=PANop =L,
(ii) C ={{r,Ly,...,Lg) | r=L+« Ly,...,L; € P}
U{(L,r1,...,rn) | {r1,...,rn}={reP|h(r)=L}}.

86 M. Homola

Armed with such a framework we instantly identify the class of acyclic pro-
grams in Definition 7. Clearly, this definition is equivalent to the original one,
as introduced in [18].

Definition 7. We say that logic program P is strictly acyclic (or just acyclic)
if Gp does not contain a path that is cyclic. We say that a MDLP P is strictly
acyclic if Up is strictly acyclic.

In [5], further reduction of Gp is utilized, once an interpretation M and a
given notion of rejection are available. The resulting reduced AND/OR-graph is
stripped from dependencies corresponding to rules that are rejected or that are
not applicable.

Definition 8. Let P be a MDLP, M a total interpretation and Rejected (P, M)
a set of rejected rules according to some rule-rejecting semantics. The reduced
AND/OR-graph of P with respect to M, G7J\>4 is obtained from Gp by

1. removing all 1 € N4 and their connectors (as well as removing r from all
connectors containing it as an output node) if either r € Rejected(P, M) or
M ¥ b(r), and

2. replacing, for every L € O, the connector of not L by the 0-connector (not L),
if L is associated with 0-connector after step 1 and no r € Rejected(P, M)
exists s.t. h(r) = L.

Possessing the outlined framework, authors of [5] have introduced the “root
condition” and the “chain condition”, that we adopt in Definition 9 and 10
respectively.

Definition 9. Let P be a MDLP, M a total interpretation and Rejected(P, M)
a set of rejected rules according to some rule-rejecting semantics. We say that
P, M and Rejected(P, M) obey the root condition if, for each not L € M~, one
of the following conditions holds:

(i) (Yr €Up) h(r)=L = MF¥ b(r),
(ii) there exists an acyclic path p in GA rooted in not L.

Definition 10. We say that a MDLP P and a total interpretation M obey the
chain condition if, for each pair of rules r € P;, v’ € P; s.t. ¢ < j, r ™ 1/,
M E b(r), M E b(r'") and r' € Rej* (P, M), there also exists r"" € Py s.t. j < s,
")" and b(r") C b(r).

A theorem follows in [5], stating that if both, the root and the chain condition,
are satisfied by a DLP P, a total interpretation M and Rej(P, M) then M €
DSM (P) if and only if M is amodel of P (both transformed to extended logic
programs) w.r.t. the BDJU semantics.

In [3] relations between all four of these semantics are further investigated,
once all four are generalized to the platform of GELPs. It is shown there, that
the root condition renders a proper subclass of DLPs, in order to compare two
semantics that utilize Def (P, M) and Def*(P, M) for defaults respectively, and

Dynamic Logic Programming 87

share the same implementation of rejection. We adopt this proposition from [3]
and generalize it to the platform of MDLPs in Theorem 2. In [3] it is also shown
that two pairs of semantics that differ in rejection but use the same defaults,
pairwise, coincide on a DLP P and a total interpretation M if they obey the
chain condition. We adopt this proposition in Theorem 3.2

Theorem 2. Let P be a MDLP, M a total interpretation. Then it holds that:

(i) M € DJU(P) = M € DSM(P) if and only if P, M and Rej(P,M) obey
the root condition,

(tt) M € BDJU(P) = M € BDSM(P) if and only if P, M and Rej (P, M)
obey the root condition.

Theorem 3. Let P be a MDLP, M a total interpretation. If P and M obey the
chain condition then each of the following propositions holds:

(i) M € DJU(P)= M € BDJU(P),
(ii) M € DSM(P) = M € BDSM(P).

It follows in [3], that if both of the conditions are obeyed by P and M, then all
four of the semantics coincide on P and M. However, as we show in Example 4,
many times the chain condition is not obeyed but the semantics do coincide. We
argue that this restriction is not accurate.

Ezample 4. Let P = {P, < P, < P}, P, = {a <« }, P, = {nota « }
and P; = {a < notb}. The chain condition is not obeyed by P and M =
{a, not b, not -~ a, not = b}. Yet, DSM(P) = BDSM(P) = {M} and DJU(P) =
BDJU(P) = {M}.

We now return to considerations about programs with restricted occurrence
of cycles. We focus on a hypothesis that different behavior of semantics is always
accompanied by presence of cyclic dependencies among literals. Our aim is to
restrict somehow the occurrence of cyclic dependencies in order to establish the
coincidence of the semantics.

Programs with cycles are often considered odd. Self-dependence, connected
with presence of cycles, is marked as unpleasant and undesirable feature, as
strict, deductive reasoning — closely interconnected with mathematical logic —
forbids it. Yet, in logic programming cycles are useful, for example to express
equivalence. Moreover there are programs that contain cycles and still different
semantics match regarding them. Both of these features are apparent from Ex-
ample 5. Hence we introduce yet another, weaker, condition of acyclicity in the
consecutive Definition 11. With this condition, we are able to identify programs,
where cycles may be present, but each literal is supported by at least one acyclic
derivation.

2 We remark that this property does not depend on the particular choice of defaults.
In fact, it holds for arbitrary set of default assumptions. See [10] for details.

88 M. Homola

Ezample 5. Let P = {P, < P2}, P = {a « b;b «— a} and P, = {a « }.
All of the four semantics match on P. DJU(P) = DSM(P) = BDJU(P) =
BDSM (P) = {{a,b, not = a,not = b}}. Actually, the cyclic information of pro-
gram P; is not redundant in any way. P; states that the truth value of a is
equivalent with the truth value of b and vice versa. Later, when the more recent
knowledge of P, appears telling that a is true we derive that also b is true.

Definition 11. We say that logic program P is sufficiently acyclic if for every
literal L € L there exists an acyclic path in the hypergraph Gp associated with P
that is rooted in L. A MDLP P is sufficiently acyclic whenever Up is sufficiently
acyclic.

The application of the condition of sufficient acyclicity on MDLPs in general
is, however, useless — as when the residue is computed, several rules are retracted
and the condition may not be satisfied any more. So we resort to the one-model
relations of two semantics quite like in the case of the root condition. The relation
is established for a program and a given model. Possessing a candidate-model,
the residue is determined, and the condition is applied on the residue instead of
the whole program.

To establish one-model equivalence of two semantics on a program, we re-
peatedly use a method, that is sketched in Remark 1.

Remark 1. Let P be a MDLP and let M be a total interpretation. Let S; and
So be two rule-rejecting semantics with shared implementation of defaults and
different implementation of rejection. Let D be the set of defaults assigned to P
and M by these semantics and let R; and Ry be the residues assigned to P and
M by S7 and S respectively. If

(i) R1 € Ro,

then M € S1(P) if and only if there exists such R C Ry that M = least(RU D) —
i.e., we are able to find R, a subset of Ry, s.t. R still contains enough of rules that
are necessary to compute M. Therefore we concentrate on searching for such sets
R C R; in order to establish equivalence of S; and S, regarding P and M.

The condition for one-model equality of that pairs of semantics that differ in
the implementation of rejection and use same defaults is expressed in Theorem 4.
The theorem uses the following lemma.

Lemma 1. Let S be the BDSM or the BDJU semantics. Let P be a MDLP,
M € S(P) and let Defaults(P, M) be the default assumptions assigned to P and
M by S. If the set R defined as

R={r|r € Res(P,M)ANMFE b(r)}

is sufficiently acyclic then M can be computed as a model in the given semantics

using only the rules of R. That is, M = least(R U Defaults(P, M)).

Dynamic Logic Programming 89

Proof. Since R is sufficiently acyclic, there exists a rule » € R such that for each
L € b(r) for no 7" € R holds h(r’) = L. And r € R so it holds that M F b(r).
From Definitions 2 and 4 and from how R is defined it follows that for each rule
q € Res*(P,M), M F b(q) thereis a ¢’ € Rs.t. h(q) = h(¢') and since M € S(P)
then b(r) C Defaults(P, M). We now construct

M° = Defaults(P, M) , M'=M°Uh(r) ,

R'=R, R = RO\ {+" | h(+"") = h(r)} .

Assume that M7 and R’ are constructed by adding one literal L € £ to M7~!

and removing all 7/ from R7~! such that h(r") = L, 0 < j < i. Again, as R is
sufficiently acyclic, there is r € R’ s.t. for each L € b(r) for no v’ € R' holds
h(r") = L. From the construction of D?, R’ it follows that

(Vj <i) MPU{h(r)|re R} =M .
Therefore b(r) C M*, and so we are able to construct
Mt = M Uh(r) , R = R\ {r" € R" | (r") = h(r)} .

It is straightforward that U;’il M? = M. This way we have computed M as
a model in S only from the rules of R. (Step by step, we have simulated the
iterations of the least(-) operator.) In other words,

M = least(R U Defaults(P, M)) .

O
Theorem 4. Let P be a MDLP and M be its total interpretation. If the set

R={r|re€ Res(P,M)ANMFE b(r)}

is sufficiently acyclic then it holds that

(i) M € DSM(P)= M € BDSM(P), and also
(ii) M € DJU(P) = M € BDJU(P).

Proof. The only-if part of both (i) and (ii) follows from Theorem 1. The if
part proves as follows. Let P be a MDLP. Let M € BDSM(P) (BDJU(P)
respectively). Let R be sufficiently acyclic. From Lemma 1 we get that M can
be computed only using the rules of R. Since

R C Res(P,M) C Res(P,M) ,
it follows from Remark 1 that M € DSM(P) (M € DJU(P)). O

In Theorem 4 we have presented a restrictive condition for one-model equality
of those pairs of semantics that differ in rejection and use same defaults. We now
show (in Lemma 2) that under this condition also the root condition is satisfied.
It follows as a direct consequence of this lemma and Theorem 4 that under our
condition all four semantics coincide (Corollary 1).

90 M. Homola

Lemma 2. Let P be a MDLP and M its total interpretation. Let
R={r|r € Res(P,M)ANMEb(r)} .

If R is sufficiently acyclic then both of the triples P, M, Rej(P,M) and P, M,
Rej* (P, M) obey the root condition.

Proof. R is sufficiently acyclic, hence for every L € M~ either L € Def (P, M)
and then condition (i) of Definition 9 (root condition) is satisfied or there exists
a rule r € Res(P,M) s.t. M E b(r) and h(r) = L and therefore also ' € R
s.t. h(r') = L and so there is a path p in Gg rooted in L that is acyclic. The
subpath p’ of p, terminated in every not L’ € D whose connector was replaced
by (not L) in step 2 of the construction of GA!, is an acyclic path in G rooted
in L. And so condition (ii) of Definition 9 is satisfied. Hence the root condition
is obeyed by P, M and Rej (P, M).

As for each r € Res(P,M), M £ b(r) there exists such ' € Res*(P, M)
that h(r') = h(r) and M E b(r') and vice versa, we get that also P, M and
Rej*(P, M) obey the root condition. a

Corollary 1. Let P be a MDLP and M its total interpretation. If the set
R={r|r € Res(P,M)ANMFE b(r)}
is sufficiently acyclic then
M e DSM(P)=M € BDSM(P)=M € DJU(P)=M € BDJU(P) .

Moreover, as for a strictly acyclic program each of its subsets is sufficiently
acyclic, it trivially follows that all four semantics coincide on strictly acyclic
programs as we state in the following corollary.

Corollary 2. Let P be a strictly acyclic MDLP. Then
DSM(P) = BDSM(P) = DJU(P) = BDJU(P) .

We have shown that the four rule-rejecting semantics coincide on strictly
acyclic programs. In Corollary 1 we have also established a more accurate re-
striction that renders the one-model equivalence of the semantics. However, com-
paring entire model-sets assigned to a program by two semantics one by one is
computationally as complex as computing and enumerating these two model-
sets. So, this result is rather of theoretical value.

5 RDSM Semantics and DLPs

In [7], Alferes et al. have introduced a new semantics for linear DLPs. Motiva-
tion for this new semantics roots in the observation that even the most restric-
tive semantics, DSM, provides counterintuitive models for some programs (cf.
Example 6).

Dynamic Logic Programming 91

Ezample 6. Let P = {P; < Py} where P, = {a < ;nota «— } and P, = {a < a}.
It holds that DSM({P1}) = @, it is not surprising as P; is contradictory. If
we inspect the single rule of P> we see that it actually brings no new factual
information. We suppose that addition of such rule should not add new models
to the program. However, DSM (P) = {{a, not = a}}.

Such rules as the one of P, from Example 6, having head a subset of the
body, are called tautological. Tautological rules are in fact just a special case of
cycles that only span throughout one rule. In [7], authors have identified even
broader class of extensions of DLPs that, according to their intuition, should not
yield new models of the programs. Such extensions are called refined extensions.
Then a principle has been formed, stating that, having a proper semantics, if a
program P’ is just a refined extension of P then it should not have a model that
is not also a model of P. This principle is called the refined extension principle.
We refer the reader who is interested in precise definitions to [7].

In [7], also a modified DSM semantics has been introduced. The modification
is slight, two conflicting rules of the same program are allowed to reject each
other. Formally, the set of rejected rules of this semantics is

Rej®(P,M)={rc P | (3 € P})i =4, MEb),rnr'} .
The semantics is formalized in Definition 12.

Definition 12. A rule-rejecting semantics of DLPs that uses RejR(P,M) for
rejection and Def (P, M) for defaults is called the refined dynamic stable model
(RDSM) semantics. In other words, a total interpretation M is a model of a DLP
P w.r.t. the RDSM semantics whenever M = least(Res™(P, M) U Def (P, M)),
where Res™(P, M) is the residue.

We agree with [7] that the RDSM semantics is very favourable. It has been
shown in [7] that it satisfies the refined extension principle and, as we adopt
in Theorem 5, it always yields such model-set that is a subset of the model-
set w.r.t. the DSM semantics. Moreover, it has been precisely described and
motivated in [7], why some models provided by DSM should be excluded.

Theorem 5. For any DLP P it holds that RDSM (P) C DSM(P).

In [7], it further has been shown that for a program P that does not contain
a pair of conflicting rules in the very same P; € P, the RDSM and the DSM
semantics coincide. However, this result neither is tight as many programs exist
s.t. DSM and RDSM coincide on them and the condition is not satisfied.

The RDSM semantics has been introduced only for linear DLPs and according
to our deepest knowledge all attempts to generalize it for MDLPs have failed
so far (cf. [19]). Hence, in this section, we restrict our considerations to linear
DLPs. In the remaining we show that under a very similar restriction as the one
of Corollary 1, for a given model, all five of the semantics coincide.

First of all, the following example demonstrates why the condition has to be
altered.

92 M. Homola

Ezample 7. Recall again the program P from Example 6. Let M = {a, not —a}.
Even if R = {a «,a < a} is sufficiently acyclic, M € DSM(P) and M ¢
RDSM(P). Indeed, the fact that R ¢ Res™(P, M) causes the trouble. The
sufficient acyclicity is broken in ResR(P, M) and therefore a can not be derived
in the refined semantics.

The further restrictive condition is introduced in Theorem 6, where we prove
the one-model coincidence of RDSM and DSM and we also confirm that the
propositions of Theorem 4 hold under this modified condition as well. The the-
orem uses the following lemma.

Lemma 3. Let semantics S be one of DSM, DJU, BDSM and BDJU. Let P be
a DLP. Let M € S(P). Let Rejected(P, M) be the rejected rules, Residue(P, M)
be the residue and Defaults(P, M) be the defaults assigned to P and M by S. If

R ={r|r € Res™(P, M)A M E b(r)}

1s sufficiently acyclic then M can be computed as a model in the given semantics
using only the rules of R'. That is, M = least(R’' U Defaults(P, M)).

Proof. From Definitions 2, 4 and 12 and from how R’ is defined it follows that
if M € S(P) then for each rule ¢ € Residue(P, M), M F b(q) there is a ¢ € R’
s.t. h(q) = h(q’). Once we are aware of this fact this lemma is proved exactly as
Lemma 1. O

Theorem 6. Let P be a DLP and M be its total interpretation. If
R ={r|r & Res™(P, M)A M E b(r)}
1s sufficiently acyclic then the following propositions hold:

(i) M € DSM(P) = M € RDSM(P),
(ii) M € DSM(P) = M € BDSM(P),
(iii) M € DJU(P) = M € BDJU(P).

Proof. Propositions (ii) and (iii) are proved like in the above Theorem 4. The if
part of (i) follows from Theorem 5. The only if part of (i) proves as follows.

Let M € DSM(P). Let R’ be sufficiently acyclic. From Lemma 3 we know
that M can be computed using only the rules of R’. Also

R’ C Res®(P, M) C Res(P, M) ,
so it follows from Remark 1 that M € RDSM (P). O

In the following lemma we show that even if we have slightly modified the
condition, its satisfaction still implies that the root condition is also satisfied.
Hence if the modified condition is satisfied, all five of the semantics for DLPs
coincide on a given model as we state in Corollary 3.

Dynamic Logic Programming 93

Lemma 4. Let P be a MDLP and M its total interpretation. Let
R ={r|r € Res"(P,M)NME b(r)} .

If R’ is sufficiently acyclic and M € DJU(P) (M € BDJU(P)) then P, M,
Rej(P,M) (P, M, Rej(P,M)) obey the root condition.

Proof. This lemma the same way as Lemma 2 if we realize that when M €
DJU(P) (M € BDJU(P)) then for each rule r € Res(P,M) (r € Res’ (P, M))
s.t. M E b(r) and h(r) = L there also exists ' € R’ s.t. h(r’) = L. O

Corollary 3. Let P be a DLP and M its total interpretation. If the set
R ={r|r € Res"(P,M)NMFE b(r)}
is sufficiently acyclic then

M € DSM(P) = M € BDSM(P) = M € RDSM(P) =
=M € DJU(P) = M € BDJU(P) .

As for Corollary 1, also for Corollary 3 it holds that if, using it, we want
to compare entire model-sets assigned to a program by a pair of semantics,
computational complexity is the same as enumerating and comparing these two
model-sets. Anyway, it trivially follows from this corollary that all five of the
semantics coincide on strictly acyclic programs, as follows in Corollary 4.

Corollary 4. Let P be a strictly acyclic DLP. Then

DSM(P) = BDSM(P) = RDSM(P) = DJU(P) = BDJU(P) .

6 Conclusion

In accordance with [3,15], we have built MDLPs over a more general language
of GELPs, that allows for more elegant comparisons, since no transformations
are necessary, as the previous approaches are obtained as its special cases. We
have then compared four different rule-rejecting semantics of MDLPs and in
addition one more when restricted to linear DLPs. We have introduced sufficient
acyclicity. Using this notion, we have provided a restrictive condition on a MDLP
(DLP) P and a given candidate model M s.t. if it is satisfied all four (five)
semantics coincide on P and M. As a trivial consequence we have stated the
main result, that on strictly acyclic programs all four (five) of the semantics
coincide.

There are several open problems. As there are programs that contain cycles
and several of the five semantics coincide on them, the search for a more proper
characterization of the class of programs on which these semantics coincide is
still open. In this line, we suggest investigation of other well known classes, as

94 M. Homola

stratified and call-consistent programs. One of the most favourable semantics,
RDSM, is only known for DLPs, generalizing RDSM to MDLPs is a challenging
problem. Comparing semantics that are based on rejection of rules with other
approaches (such as the one of [15] based on Kripke structures) might be inter-
esting. To meet this goal, we propose that more abstract criteria for evaluating
these semantics should be introduced, seeing some of the present ones, e.g., the
refined extension principle of [6, 7], too attached to the rule-rejecting framework.

Acknowledgements

I would like to thank to anonymous referees for valuable comments and sugges-
tions. I would like to thank to Jén Sefrdnek and Joao A. Leite for their advising
and help and to Michaela DaniSova and to Martin Baldz for language and typo-
graphical corrections.

References

1. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic logic program-
ming. In Sadri, F., Satoh, K., eds.: Proceedings of the CL-2000 Workshop on
Computational Logic in Multi-Agent Systems (CLIMA’00). (2000) 17-26

2. Leite, J.A., Pereira, L.M.: Iterated logic program updates. In Jaffar, J., ed.:
Proceedings of the 1998 Joint International Conference and Symposium on Logic
Programming (JICSLP’98), MIT Press (1998) 265-278

3. Leite, J.A.: Evolving Knowledge Bases: Specification and Semantics. Volume 81
of Frontiers in Artificial Intelligence and Applications, Dissertations in Artificial
Intelligence. I0S Press, Amsterdam (2003)

4. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.:
Dynamic logic programming. In Cohn, A.G., Schubert, L.K., Shapiro, S.C., eds.:
Proceedings of the Sixth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’98), Morgan Kaufmann (1998) 98-109

5. Eiter, T., Sabbatini, G., Fink, M., Tompits, H.: On updates of logic programs:
Semantics and properties. Technical Report 1843-00-08, Institute of Information
Systems, Vienna University of Technology (2002)

6. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for
semantics of dynamic logic programming. Studia Logica 79(1) (2005) 7-32

7. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: Semantics for dynamic logic program-
ming: A principle-based approach. In Lifschitz, V., Niemela, 1., eds.: Proceedings
of the Seventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), Springer-Verlag (2004)

8. Leite, J.: On some differences between semantics of logic program updates. In
Lemaitre, C., Reyes, C.A., Gonzalez, J.A., eds.: Advances in Artificial Intelligence:
Proceedings of the 9th Ibero-American Conference on AI (IBERAMIA-04). LNAT,
Springer (2004)

9. Eiter, T., Sabbatini, G., Fink, M., Tompits, H.: On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming (2002)
711-767

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Dynamic Logic Programming 95

Homola, M.: On relations of the various semantic approaches in multidimensional
dynamic logic programming. Master’s thesis, Comenius University, Faculty of
Mathematics Physics and Informatics, Bratislava (2004)

Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional logic programming.
Technical report, Departamento de Informaética, Faculdade de Ciéncias e Tecnolo-
gia, Universidade Nova de Lisboa (2001)

Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic knowledge
representation. In Eiter, T., Faber, W., Truszczynski, M., eds.: Proceedings of the
Sixth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’01), Springer (2001) 365-378

Alferes, J.J., Banti, F., Brogi, A.: From logic program updates to action description
updates. In this volume.

Sakama, C., Inoue, K.: Coordination between logical agents. In this volume.
Sefrének, J.: Semantic considerations on rejection. In: Proceedings of the In-
ternational Workshop on Non-Monotonic Reasoning (NMR 2004), Foundations of
Nonmonotonic Reasoning. (2004)

van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM 23 (1976) 733-742

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R.A., Bowen, K.A., eds.: Logic Programming, Proceedings of the Fifth
International Conference and Symposium, MIT Press (1988) 1070-1080

Apt, K.R., Bezem, M.: Acyclic programs. New Generation Computing 9 (1991)
335-363

Sigka, J.: Refined extension principle for multi-dimensional dynamic logic program-
ming. Master’s thesis, Comenius University, Faculty of Mathematics Physics and
Informatics, Bratislava (2004)

Declarative Agent Control

Antonis Kakas', Paolo Mancarella?, Fariba Sadri®,
Kostas Stathis®*, and Francesca Toni%?

! Dept. of Computer Science, University of Cyprus
antonis@cs.ucy.ac.cy
2 Dip. di Informatica, Universita di Pisa
{paolo, stathis, toni}@di.unipi.it
3 Dept. of Computing, Imperial College London
{fs, ft}@doc.ic.ac.uk
4 School of Informatics, City University London
kostas@soi.city.ac.uk

Abstract. Inthis work, we extend the architecture of agents (and robots)
based upon fixed, one-size-fits-all cycles of operation, by providing a frame-
work of declarative specification of agent control. Control is given in terms
of cycle theories, which define in a declarative way the possible alterna-
tive behaviours of agents, depending on the particular circumstances of
the (perceived) external environment in which they are situated, on the
internal state of the agents at the time of operation, and on the agents’
behavioural profile. This form of control is adopted by the KGP model of
agency and has been successfully implemented in the PROSOCS platform.
We also show how, via cycle theories, we can formally verify properties of
agents’ behaviour, focusing on the concrete property of agents’ interrupt-
ibility. Finally, we give some examples to show how different cycle theories
give rise to different, heterogeneous agents’ behaviours.

1 Introduction

To make theories of agency practical, normally a control component is proposed
within concrete agent (robot) architectures. Most such architectures rely upon a
fixed, one-size-fits-all cycle of control, which is forced upon the agents whatever
the situation in which they operate. This kind of control has many drawbacks,
and has been criticised by many (e.g. in robotics), as it does not allow us to
take into account changes in the environment promptly and it does not take into
account agent’s preferences and “personality”.

In this paper, we present an alternative approach, which models agents’ con-
trol via declarative, logic-based cycle theories, which provide flexible control in
that: (i) they allow the same agent to exhibit different behaviour in different
circumstances (internal and external to the agent), thus extending in a non-
trivial way conventional, fixed cycles of behaviour, (ii) they allow us to state
and verify formal properties of agent behaviour (e.g. their interruptibility), and
thus (iii) provide implementation guidelines to design suitable agents for suitable

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 96-110, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Declarative Agent Control 97

applications. Furthermore, cycle theories allow different agents to have different
patterns of behaviour in the same circumstances, by varying few, well-identified
components. Thus, by adopting different cycle theories we obtain behaviourally
heterogeneous agents.

The notion of cycle theory and its use to determine the behaviour of agents
can in principle be imported into any agent system, to replace conventional fixed
cycles. However, in defining the cycle theory of an agent, we will assume that
the agent is equipped with a pool of state transitions that modify its internal
state. We will understand the operation of agents simply in terms of sequences
of such transitions. Such sequences can be obtained from fized cycles of opera-
tion of agents as in most of the literature. Alternatively, such sequences can be
obtained via fixed cycles together with the possibility of selecting amongst such
fixed cycles according to some criteria e.g. the type of external environment in
which the agent will operate (see the recent work of [4]). Yet another possibil-
ity, that we pursue in this paper, is to specify the required operation via more
versatile cycle theories that are able to generate dynamically several cycles of
operations according to the current need of the agent. This approach has been
adopted in the KGP model of agency [10, 2] and implemented in the PROSOCS
platform [16].

We will define a cycle theory as a logic program with priorities over rules.
The rules represent possible follow-ups of (already executed) transitions. The
priorities express high-level preferences of the particular agent equipped with
the cycle theory, that characterise the operational behaviour of the agent, e.g.
a preference in testing the preconditions of an action before it tries to execute
it. We will assume that the choice for the next transition depends only on the
transition that has just been executed (and the resulting state of the agent),
and not on the longer history of the previous transitions. We believe this not to
be restrictive, in that the effects of any earlier transitions may in any case be
recorded in the internal state of the agent and reasoned upon by it. Also, the
approach can be extended to take into account longer histories of transitions
when deciding the next one.

2 Background

Cycle theories will be written in the general framework of Logic Programming
with Priorities (LPP). Our approach does not rely on any concrete such frame-
work. One such concrete framework could be the Logic Programming without
Negation as Failure (LPwNF) [5,8] suitably extended to deal with dynamic
preferences [9]. Other concrete frameworks that could be used for LPP are, for
instance, those presented in [13,12]. Note also that our approach does not de-
pend crucially on the use of the framework of LPP: other frameworks for the
declarative specification of preference policies, e.g. Default Logic with Priorities
[3], could be used instead. Note, however, that the use of a logic-based frame-
work where priorities are encoded within the logic itself is essential, since it
allows reasoning even with potentially contradictory preferences. Also, note that

98 A. Kakas et al.

the choice of one logic rather than another might affect the properties of agents
specified via cycle theories.

For the purposes of this paper, we will assume that an LPP-theory, referred
to as 7, consists of four parts:

(i) a low-level part P, consisting of a logic program; each rule in P is assigned
a name, which is a term; e.g., one such rule could be
n(X) : p(X) — q(X,Y),r(Y)
with name n(X);
(ii) a high-level part H, specifying conditional, dynamic priorities amongst rules
in P; e.g., one such priority could be
(X)) :n(X) = m(X) « ¢(X)
to be read: if (some instance of) the condition ¢(X) holds, then the rule in
P with name (the corresponding instance of) n(X) should be given higher
priority than the rule in P with name (the corresponding instance of) m(X).
The rule is given a name, h(X);
(iii) an auxiliary part A, defining predicates occurring in the conditions of rules
in P and H and not in the conclusions of any rule in P;
(iv) a notion of incompatibility which, for the purposes of this paper, can be
assumed to be given as a set of rules defining the predicate incompatible,
e.g.
incompatible(p(X),p' (X))
to be read: any instance of the literal p(X) is incompatible with the cor-
responding instance of the literal p’(X). We assume that incompatibility is
symmetric, and refer to the set of all incompatibility rules as I.

Any concrete LPP framework is equipped with a notion of entailment, that we
denote by =p,. Intuitively, 7 }=p,a iff o is the “conclusion” of a sub-theory of
P U A which is “preferred” wrt H U A in 7 over any other any other sub-theory
of P U A that derives “conclusion” incompatible with « (wrt I). Here, we are
assuming that the underlying logic programming language is equipped with a
notion of “entailment” that allows to draw “conclusions”. In [13,12,9,8, 5], =pr
is defined via argumentation.

3 Abstract Agent Model

We assume that our agents conform to the following abstract model, which can
be seen as a high-level abstraction of most agent systems in the literature. Agents
are equipped with

— some internal state, which changes over the life-time of the agent, and is
formalised in some logic-based language or via some concrete data structure
in some programming language;

— some pool of (state) transitions, that modify the state of the agent, and may
take some inputs to be “computed” or selected by

— some selection functions on their states.

Declarative Agent Control 99

For example, the state may consist of beliefs, desires and intentions, represented
in somemodal logics, as in the BDI architecture [14] and its follow-ups, e.g. [1], or
commitments and commitment rules, as in [15], or beliefs, goals and capabilities,
represented in concurrent logic programming, as in [7], or knowledge, goals and
plan, represented in (extensions of) logic programming, as in [11].

The transitions in the given pool can be any, but, if we abstract away from
existing agent architectures and models in the literature, we can see that we need
at least a transition responsible for observing the environment, thus rendering
the agents situated. This transition might modify the internal state differently
in concrete agent architectures, to record the observed events and properties
of the environment. Here, we will call such a transition Passive Observation
Introduction (POI). POI is “passive” in the sense that, via such a transition,
the agent does not look for anything special to observe, but rather it opens its
“reception channel” and records any inputs what its sensors perceive. Another
transition that is present in most agent systems is that of Action Ezecution (AE),
whereby actions may be “physical”, communicative, or “sensing”, depending on
the concrete systems.

Other useful transitions besides POI and AE (see e.g. [10,2]) may include
Goal Introduction (GI), to introduce new goals into the state of the agent, tak-
ing into account changes to the state and to the external environment that
somehow affect the preferences of the agent over which goals to adopt, Plan In-
troduction (PI), to plan for goals, Reactivity (RE), to react to perceived changes
in the environment by means of condition-action/commitment-like rules, Sens-
ing Introduction (SI), to set up sensing actions for sensing the preconditions of
actions in the agent’s plan, to make sure these actions are indeed executable,
Active Observation Introduction (AOI), to actively seek information from the
environment, State Revision (SR) to revise the state currently held by the agent,
and Belief Revision (BR), e.g. by learning.

Whatever pool of transitions one might choose, and whatever their concrete
specification might be, we will assume that they are represented as

T(S,X,5, 1)

where S is the state of the agent before the transition is applied and S’ the state
after, X is the (possibly empty) input taken by the transition, and 7 is the time
of application of the transition. Note that we assume the existence of a clock
(possibly external to the agent and shared by a number of agents), whose task is
to mark the passing of time. The clock is responsible for labelling the transitions
with the time at which they are applied. This time (and thus the clock) might
play no role in some concrete agent architectures and models, where time is not
reasoned upon explicitly. However, if the framework adopted to represent the
state of the agent directly manipulates and reasons with time, the presence of
a clock is required. Note also that the clock is useful (if not necessary) to label
executed actions, and in particular communicative actions, to record their time
of execution, as foreseen e.g. by FIPA standards for communication [6].

As far as the selection functions are concerned, we will assume that each transi-
tion T available to the agent is equipped with a selection function fr, whose specifi-

100 A. Kakas et al.

cation depends on the representation chosen for the state and on the specification of
the transition itself. For example, AE is equipped with a selection function f4g re-
sponsible for choosing actions to be executed. These actionsmay be amongst those
actions in the plan (intention/commitment store) part of the state of the agent
whose time has not run-out at the time of selection (and application of the transi-
tion) and belonging to a plan for some goal which has not already been achieved by
other means.

In the next Section, we will see that, for fixed cycles, the role of the selection
functions is exclusively to select the inputs for the appropriate transition when
the turn of the transition comes up. Later, in Section 5, we will see that the role
of selection functions when using cycle theories is to help decide which transition
is preferred and should be applied next, as well as provide its input.

4 Fixed Cycles and Fixed Operational Trace

Both for fixed cycles and cycle theories, we will assume that the operation of an
agent will start from some initial state. This can be seen as the state of the agent
when it is created. The state then evolves via the transitions, as commended by
the fixed cycle or cycle theory. For example, the initial state of the agent could
have an empty set of goals and an empty set of plans, or some designer-given
goals and an empty set of plans. In the sequel, we will indicate the given initial
state as Sy.
A fized cycle is a fixed sequence of transitions of the form

Ty,....,T,
where each T;, ¢ = 1,...,n, is a transition chosen from the given pool, and n > 2.

A fixed cycle induces a fized operational trace of the agent, namely a (typically
infinite) sequence of applications of transitions, of the form

Tl(So,Xl, 51,7'1),T2(51,X2, SQ,TQ), .. ,Tn(Sn_th, Sn,Tn),

Tl(Sna Xn—i—ly Sn-&-l, Tn+1); CIEa aTn(SZn—h X2n7 SZna TQn)7 e
where, for each i > 1, fr,(Si—1,7;) = X;, namely, at each stage, X; is the
(possibly empty) input for the transition 7; chosen by the corresponding selection
function fr,.

Then, a classical “observe-think-act” cycle (e.g. see [11]) can be represented
in our approach as the fixed cycle:

POI, RE, PI, AE, AOI.

As a further example, a purely reactive agent, e.g. with its knowledge consisting
of condition-action rules, can execute the cycle

POI,RE,AE.
Note that POI is interpreted here as a transition which is under the control
of the agent, namely the agent decides when it is time to open its “reception
channel”. Below, in Section 8, we will see a different interpretation of POI as an
“interrupt”.

Declarative Agent Control 101

Note that, although fixed cycles such as the above are quite restrictive, they
may be sufficiently appropriate in some circumstances. For example, the cycle for
a purely reactive agent may be fine in an environment which is highly dynamic.
An agent may then be equipped with a catalogue of fixed cycles, and a number
of conditions on the environment to decide when to apply which of the given
cycles. This would provide for a (limited) form of intelligent control, in the spirit
of [4], paving the way toward the more sophisticated and fully declarative control
via cycle theories given in the next Section.

5 Cycle Theories and Cycle Operational Trace

The role of the cycle theory is to dynamically control the sequence of the inter-
nal transitions that the agent applies in its “life”. It regulates these “narratives
of transitions” according to certain requirements that the designer of the agent
would like to impose on the operation of the agent, but still allowing the pos-
sibility that any (or a number of) sequences of transitions can actually apply
in the “life” of an agent. Thus, whereas a fixed cycle can be seen as a restric-
tive and rather inflexible catalogue of allowed sequences of transitions (possibly
under pre-defined conditions), a cycle theory identifies preferred patterns of se-
quences of transitions. In this way a cycle theory regulates in a flexible way the
operational behaviour of the agent.
Formally, a cycle theory 7cyee consists of the following parts.

— An initial part 7;p45a1, that determines the possible transitions that the agent
could perform when it starts to operate (initial cycle step). More concretely,
Tinitial consists of rules of the form

*T(So, X) < C(So, 7, X), now(r)

sanctioning that, if the conditions C' are satisfied in the initial state Sy at the
current time 7, then the initial transition should be T', applied to state Sy
and input X, if required. Note that C(Sy, 7, X) may be absent, and T;pitial
might simply indicate a fixed initial transition 77.

The notation *7'(S, X) in the head of these rules, meaning that the transition
T can be potentially chosen as the next transition, is used in order to avoid
confusion with the notation 7'(S, X, S’, 7) that we have introduced earlier to
represent the actual application of the transition 7.

— A basic part Tpusic that determines the possible transitions (cycle steps)

following other transitions, and consists of rules of the form

«T'(S", X") —T(S,X,S,7), EC(S", 7", X"), now(r")

which we refer to via the name Ry (S’, X’). These rules sanction that,
after the transition 7' has been executed, starting at time 7 in the state S
and ending at the current time 7’ in the resulting state S’, and the conditions
EC evaluated in S’ at 7' are satisfied, then transition 7" could be the next
transition to be applied in the state S’ with the (possibly empty) input X', if
required. The conditions EC' are called enabling conditions as they determine
when a cycle-step from the transition 7' to the transition 7" can be applied.

102

and with chl

A. Kakas et al.

In addition, they determine the input X’ of the next transition 7. Such
inputs are determined by calls to the appropriate selection functions.
A behaviour part Tpenaviour that contains rules describing dynamic priorities
amongst rules in Tpqsic and Zinitiar- Rules in Tpepgviour are of the form
RT|T’ (S, X/) >_RT|T”(Sa X”) <—BC(S, X/, XN, T), nO’LU(T)
with 77 # T”, which we will refer to via the name PF, ;.. Recall that
Ry (-) and Ry (-) are (names of) rules in Tyqsic UZinitiar- Note that, with
an abuse of notation, T' could be 0 in the case that one such rule is used to
specify a priority over the first transition to take place, in other words, when
the priority is over rules in Zj,;tiq;- These rules in Tpepqviour sanction that,
at the current time 7, after transition 7', if the conditions BC' hold, then
we prefer the next transition to be T over 7", namely doing 7" has higher
priority than doing T", after T. The conditions BC' are called behaviour
conditions and give the behavioural profile of the agent. These conditions
depend on the state of the agent after 7' and on the parameters chosen in the
two cycle steps represented by Rpp/ (S, X") and Ryjp (S, X”). Behaviour
conditions are heuristic conditions, which may be defined in terms of the
heuristic selection functions, where appropriate. For example, the heuristic
action selection function may choose those actions in the agent’s plan whose
time is close to running out amongst those whose time has not run out.
An auziliary part including definitions for any predicates occurring in the
enabling and behaviour conditions, and in particular for selection functions
(including the heuristic ones, if needed).
An incompatibility part, including rules stating that all different transitions
are incompatible with each other and that different calls to the same transi-
tion but with different input items are incompatible with each other. These
rules are facts of the form

incompatible(xT (S, X),*T'(S, X)) «
for all T, T such that T # T”, and of the form

incompatible(xT (S, X),*T (S, X)) — X # X’
expressing the fact that only one transition can be chosen at a time.

Hence, Z;ycie is an LPP-theory (see Section 2) where:
(1) P= Znitial U %asiw and (11) H= %ehaviour-
In the sequel, we will indicate with ’]::Oyde the sub-cycle theory Zeycie \ Tpasic

ele the sub-cycle theory Zeycie \ Zinitial-
The cycle theory 7.yc. of an agent is responsible for the behaviour of the

agent, in that it induces a cycle operational trace of the agent, namely a (typically
infinite) sequence of transitions

Tl(SOaXhSlaTl); e aﬂ(si—17Xia SiaTi)7
Ti41(S:, Xit1, Sit1, Tig1)s - - -

(where each of the X; may be empty), such that

Sp is the given initial state;

for each i > 1, 7; is given by the clock of the system, with the property that
Ti < Titis

(Initial Cycle Step) T

cycle

A now(m) Epr *T1(S0, X1);

Declarative Agent Control 103

— (Cycle Step) for each i > 1
T5ete NTi(Si—1, X5, Siy 1) Anow(Tiv1) Epr #Ti41(Si, Xiy1)
namely each (non-final) transition in a sequence is followed by the most

preferred transition, as specified by Zcycie.

If, at some stage, the most preferred transition determined by |=,, is not unique,
we choose arbitrarily one.

Note that, for simplicity, the above definition of operational trace prevents
the agent from executing transitions concurrently. However, a first level of con-
currency can be incorporated within traces, by allowing all preferred transitions
to be executed at every step. For this we would only need to relax the above
definition of incompatible transitions to be restricted between any two transi-
tions whose executions could interact with each other and therefore cannot be
executed concurrently on the same state, e.g. the Plan Introduction and State
Revision transitions. This would then allow several transitions to be chosen to-
gether as preferred next transitions and a concurrent model of operation would
result by carrying out simultaneously the (non-interacting) state updates im-
posed by these transitions. Further possibilities of concurrency will be subject
of future investigations.

In section 8 we will provide a simple extension of the notion of operational
trace defined above.

6 Fixed Versus Flexible Behaviour

Cycle theories generalise fixed cycles in that the behaviour given by a fixed
operational trace can be obtained via the behaviour given by a cycle operational
trace, for some special cycle theories. This is shown by the following theorem,
which refers to the notions of fized cycle and fized operational trace introduced
in Section 4.

Theorem 1. Let T,...,T, be a fixed cycle, and let fr, be a given selection
Junction for each i = 1,...,n. Then there exists a cycle theory Tcycie which
induces a cycle operational trace identical to the fixed operational trace induced
by the fized cycle.

Proof. The proof is by construction as follows.

— Tinitial consists of the rule
*T1(So, X) < now(r)
i.e. the initial transition is simply 7.
— Tpasic consists of the following rules, for each ¢ with 2 <1i < n:
«T;(S", X') — T;-1(S, X, 8", 1), now(7"), X' = fr, (S, 7).
In addition 7y, contains the rule
T (S, X)) «— T,(S, X, 8", 7),now(r"), X' = fr, (S, 7).
- %eh(wiour is elnpty
— the auxiliary part contains the definitions of the given selection functions
fr,, foreach i =1,... n.

104 A. Kakas et al.

The proof then easily follows by construction, since at each stage only one cy-
cle step is enabled and no preference reasoning is required to choose the next
transition to be executed. a

It is clear that there are some (many) cycle theories that cannot be mapped
onto any fixed cycles, e.g. the cycle theory given in the next Section. So, pro-
viding control via cycle theories is a genuine extension of providing control via
conventional fixed cycles.

7 An Example

In this Section we exemplify the flexibility afforded by cycle theories through a
simple example. Assume that the pool of transitions consists of GI, PI, AE and
POI, as described in Section 3. We start from the cycle theory corresponding to
the fixed cycle given by POI, GI, PI, AE which is constructed as follows (see
Theorem 1).

(1) Tinitiar with the following rule
“POI(Sy, {}) —
namely, the only way an agent can start is through a POL
(2) Tpasic with the following rules
*GI(S', {}) « POI(S,{},S',7)
xPI(S",Gs) — GI(S,{},5,7),Gs = fpr(S',7"), now(r’)
xAE(S', As) — PI(S,Gs,S",7),As = fap(S’,7"),now(r’)
xPOI(S',{}) — AE(S, As, S, 1)
(3) /];)ehrwiour is empty.

A first simple improvement, providing a limited form of flexibility, consists
in refining the rule Rgrpr() by adding the condition that the set of goals
to plan for, which are selected by the corresponding selection function fpy, is
non-empty. This amounts at modifying the second rule of Zp,4;. by adding the
condition Gs # {} to its body.

Similarly, AE is an option after PI if some actions can actually be selected
for execution. This amounts at modifying the the third rule of 7,4 by adding
the condition As # {} to its body.

In this case, we should provide further options for choosing the transition
to be executed after GI and PI, respectively. To adhere with the given origi-
nal cycle, these rules could be simply suitable rules named by ’RG”AE(S’, As),
Rearpor(S',{}) and Rprpor(S',{}), i.e. AE and POI are also an option after
GI, and POI is also an option after PI. With this choice, the standard opera-
tional trace is recovered by adding to the Typepaviour part of the cycle theory the
following rules

Rarpr(S',Gs) = Rarjap(S', As) «

Rarap(S', As') = Rarpor(S's{}) «
Rarpi(S',Gs") = Rarpor(S',{}) <+
Rpr1ae(S’, As) = Rerpor(S',{}) <

Declarative Agent Control 105

The first rule states that PI has to be preferred over AE as the next transition
to be applied after GI, whenever both PI and AE are enabled. Similarly for the
other rules.

A more interesting, proper extension of the original (fixed) cycle amounts at
adding further options to the transition which can follow any given transition.
Imagine for instance that we want to express the behaviour of a punctual or
timely agent. This agent should always prefer executing actions if there are ac-
tions in the plan which have become urgent. This can be declaratively formalised
by adding to the 7p.sic part the rules

xAFE(S', As') — T(S,X,5,7),As" = fap(S',7"),now(r")

for each transition 7' in the pool, and by adding to the Tpepaviour part the
following rules named P£E>T, :
Rrjap(S', As'") = Ry (8", X') « urgent(As’)
for each transition 7" and 7" # AE, where urgent is defined in the auxiliary part
of the theory with the intuitive meaning. In the rest of this Section, we use T(’;ﬁe
to refer to the cycle theory corresponding to the fixed cycle POI, GI, PI, AE,
and we use 757 to refer to the extended cycle theory.
As a concrete example, consider an agent aiding a businessman who, while on
a business trip, can choose amongst three possible goals: return home (home),
read news (news), and recharge his laptop battery (battery). Let us use first the
cycle theory TC];ZG
Suppose that, initially (when now(1l) holds), the agent’s state is empty,
namely the (businessman’s) agent holds no plan or goal, and that the initial
POI does not add anything to the current state. Then GI is performed as the
next transition in the trace:
GI(SCH {}7 Sl? 1)7
and suppose also that the application of GI generates the agent’s goal (added
to S1) G1 = home. This goal may come along with a time parameter and some
temporal constraints associated with it, e.g. the actual goal can be represented
by (home,t) At < 20. Due to space limitations, we intentionally omit here the
details concerning temporal parameters of goals and actions, and the temporal
constraints associated with them. Since the state contains a goal to be planned
for, suppose that the selection function fp; selects this goal, and the PI transition
is applied next, producing two actions book_ticket and take_train. Hence, the
second transition of the trace is (when now(3) holds)
PI(S1,{},52,3)
where the new state S5 contains the above actions.
Suppose now that the selection function fap selects the action book_ticket
and hence that the next element of the trace is (when now(4) holds)
AE(Sa, {book_ticket}, S3,4). (*)
In the original fixed cycle the next applicable transition is POI, and assume
that this is performed at some current time, say 10. Hence the next element of
the trace is (when now(10) holds)
POI(Ss3,{}, S4,10). (%)

106 A. Kakas et al.

Imagine that this POI brings about the new knowledge that the laptop bat-
tery is low, suitably represented in the resulting state S;. Then the next tran-
sition GI changes the state so that the goal battery is added, and then PT is
performed to introduce a suitable plan to recharge the battery and so on.

Now suppose that we use TCZﬁe instead and that the operational trace is
identical up to the execution of the transition (*). At this point, the action
take_train may have become urgent. Notice that it is likely that this same action
was not urgent at time 3, when book_ticket was selected for execution, but has
become urgent at time 10 (e.g. because the train is leaving at 11). Then, if we
use Tfy’ﬁﬁ@ the rule P4E, po; applies and the next element of the trace, replacing
(**) above, becomes

AE(Ss, {take_train}, S}, 10).
This example shows how the use of cycle theories can lead to flexible behaviours.
More flexibility may be achieved by allowing the agents to be interruptible, i.e.
to be able to react to changes in the environment in which they are situated as
soon as the perceive those changes. This added flexibility requires some further

extensions, that we discuss in the next Section.

8 Interruptible Agents

In our approach we can provide a declarative specification of interruptible agents,
i.e. agents that are able to dynamically modify their “normal” (either fixed or
cycle) operational trace when they perceive changes in the environment in which
they are situated.

In order to obtain interruptibility, we will make use of the POI transition as the
means by which an agent can react to an interrupt. Referring to the example of
the previous Section, assume that our agent can book the ticket only through its
laptop and, by the time it decides to actually book the ticket, the laptop battery
has run out. Then, the action of recharging the laptop battery should be executed
as soon as possible in order to (possibly) achieve the initial goal. Indeed, executing
the booking action before recharging would not be feasible at all.

In order to model the environment where the agent is situated, we assume
the existence of an environmental knowledge base Env that it is not directly
under the control of the agent, in that the latter can only dynamically assim-
ilate the knowledge contained in Enwv. This knowledge base can be seen as an
abstraction of the physical (as opposed to the mental) part of the agent (its
body) which, e.g. through its sensors, perceives changes in the environment. We
assume that, besides the knowledge describing the agent’s percepts, Env mod-
els a special propositional symbol, referred to as changed_env which holds as
soon as the body of the agent perceives any new, relevant changes in the en-
vironment. The way we model the reaction of the agent to the changes repre-
sented by changed_env becoming true, is through the execution of a POI. We
also assume that the execution of a POI transition resets the truth value of
changed_env, so that the agent may be later alerted of further changes in the
environment.

Declarative Agent Control 107

The Env knowledge base becomes now part of the knowledge that the agent
uses in order to decide the next step in its operational trace. This is formally
specified through the notion of cycle-env operational trace, which extends the
notion of cycle operational trace introduced in Section 5, by replacing the defi-
nitions of Initial Cycle Step and Cycle Step by the following new definitions:
(Initial Cycle-env Step): ’];%Cle A Env A now(ty) Epr *T1 (S0, X1);

(Cycle-env Step) for each ¢ > 1
evele N T:(Si-1, Xi, Si,) A Env A now(Tiy1)
Epr # L1 (Si, Xit1)

We can now define a notion of interruptible agent as follows. Let 7.y be
the cycle theory of the agent and let T1(),...,T;(-),... be a cycle operational
trace of the agent. Let also T;(S;—1, X;, S;, 7;) be an element of the given trace
such that:

Env A now(r;) = —changed_env, and

Env Anow(r;41) = changed_env.

In other words, some changes have happened in the environment between the
time of the execution of the transitions T; and T;y; in the trace. Then we say
that the agent is interruptible if
Teyete NTi(Si—1, X4, Si, i) ANEnv Anow(Ti11) Epr *POI(S;, {}), i-e. as soon as the
environment changes, in a cycle-env operational trace the next transition would
be a POL.

It is worth noting that by interruptibility we do not mean here that the
(executions of) transitions are interrupted, rather the trace is interrupted.

In order to make an agent interruptible, we need to extend both 7y, and
Toehaviour- I Tpasic, POI should be made an option after any other transition in
the pool, which is achieved by adding the following rule Ry pos(S; {}), for any T":

*POI(S",{}) « T(S, X", 5, 1).
In Tpenaviour, the following set of rules, where T, T’ are transitions with T” #

POI, express that POI should be preferred over any other transition if the envi-
ronment has actually changed:

Rripor(S'.{}) = Ry (S', X) < changed_env. (%)
Notice that, even if the above extensions are provided in the overall Z¢y e theory,
the interruptibility of the agent is still not guaranteed. For instance, Tpenaviour
could contain further rules which make a transition T' # POI preferable over
POI even if changed_env holds. One way to achieve full interruptibility is by
adding the condition —changed_env in the body of any rule in Tyepqviour Other
than the rules (***) given above.

9 Patterns of Behaviour

In this section we show how different patterns of operation can arise from differ-
ent cycle theories aiming to capture different profiles of operational behaviour by
agents. We assume the agent is equipped with a set of transitions, as in the KGP
model [10, 2] (see Section 3 for an informal description of these transitions):

108 A. Kakas et al.

— POI, Passive Observation Introduction
— AE, Action Ezecution

— GI, Goal Introduction

— PI, Plan Introduction

— RE, Reactivity

— SI, Sensing Introduction

— AOI, Active Observation Introduction
— SR, State Revision

In Section 7 we have given a simple example of a cycle theory describing a
punctual, timely agent which attempts to execute its planned actions in time.
This agent was obtained by adding some specific rules to Zyepaviour Of a given
cycle theory. The same approach can be adopted to obtain different profiles.

For example, we can define a focused or committed agent, which, once chosen
a plan to execute, prefers to continue with this plan (refining it and/or executing
parts of it) until the plan is finished or it has become invalid, at which point the
agent may consider other plans or other goals. Hence transitions that relate to
an existing plan have preference over transitions that relate to other plans. This
profile of behaviour can be captured by the following rules added to Zpenaviour
of an appropriate cycle theory:

Rrjae(S, As) = Ry (S, X) < same_plan(S, As)
for any T and any T' # AE, and
Rripr(S,Gs) = Ry (S, X) « same_plan(S, Gs)

for any T and any T” # PI. These rules state that the agent prefers to execute
actions or to reduce goals from the same plan as the actions that have just been
executed. Here, the behaviour conditions are defined in terms of some predicate
same_plan which, intuitively, checks that the selected inputs for AE and PI,
respectively, belong to the same plan as the actions most recently executed
within the latest AE transition.

Another example of behavioral profile is the impatient pattern, where actions
that have been tried and failed are not tried again. This can be captured by rules
of the form:

RT|T/(S, _) - RT|AE(Sa AS) — fazled(S, AS)
for any T and any T” # AFE. In this way, AE is given less preference than any other
transition 7" after any transition 7. Intuitively, As are failed actions. As a result of
this priority rule it is possible that such failed actions would remain un-tried again
(unless nothing else is enabled) until they are timed out and dropped by SR.

If we want to capture a careful behaviour where the agent revises its state
when one of its goals or actions times out (being careful not to have in its state
other goals or actions that are now impossible to achieve in time) we would have
in Tpenaviour the rule:

Rrisr(S,{}) = Ry (S, -) < timed_out(S, 7)
for any T and any 77 # SR. In this way, the SR transition is preferred over

Declarative Agent Control 109

all other transitions, where the behaviour condition timed_out(S, T) succeeds if
some goal or action in the state S has timed out at time 7.

10 Conclusions and Ongoing Work

We have presented an approach providing declarative agent control, via logic
programs with priorities. Our approach share the aims of 3APL [4], to make
the agent cycle programmable and the selection mechanisms explicit, but goes
beyond it. Indeed, the approach of [4] can be seen as relying upon a catalogue of
fixed cycles together with the possibility of selecting amongst such fixed cycles
according to some criteria, whereas we drop the concept of fixed cycle completely,
and replace it with fully programmable cycle theories.

Our approach allows us to achieve flexibility and adaptability in the operation
of an autonomous agent. It also offers the possibility to state and verify properties
of agents behaviour formally. In this paper we have exemplified the first aspect via
an example, and the second aspect via the property of “interruptibility” of agents.
The identification and verification of more properties is amatter for future work.

Our approach also lends itself to achieving heterogeneity in the overall opera-
tional behaviour of different agents that can be specified within the proposed frame-
work. Indeed, an advantage of control via cycle theories is that it opens up the possi-
bility to produce a variety of patterns of operation of agents, depending on the par-
ticular circumstances under which the transitions are executed. This variety can
be increased, and many different patterns or profiles of behaviour can be defined by
varying the cycle theory, thus allowing agents with (possibly) the same knowledge
and operating in the same environment to exhibit heterogeneous behaviour, due to
their different cycle theories. We have given a number of exam ples of profiles of be-
haviour. A systematic study of behaviour parameterisation (perhaps linking with
Cognitive Science) is a matter for future work, as well as the comparison on how
different behaviours affect the agents’ individual welfare in different contexts.

Acknowledgments

This work was partially funded by the IST programme of the EC, FET un-
der the IST-2001-32530 SOCS project, within the Global Computing proactive
initiative. The last two authors were also supported by the Italian MIUR pro-
gramme “Rientro dei cervelli”.

References

1. R.H. Bordini, A. L. C. Bazzan, R. O. Jannone, D. M. Basso, R. M. Vicari, and V. R.
Lesser. AgentSpeak(XL): Efficient intention selection in bdi agents via decision-
theoretic task scheduling. In C. Castelfranchi and W. Lewis Johnson, editors,
Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2002), Part I1I, pages 1294-1302, Bologna, Italy,
July 15-19 2002. ACM Press.

110

2.

10.

11.

12.

13.

14.

15.
16.

A. Kakas et al.

A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for GC: Compu-
tational model and prototype implementation. In Proc. Global Computing 2004
Workshop, LNCS. Springer Verlag, 2004.

G. Brewka. Reasoning with priorities in default logic. In AAAI9/, pages 940-945.
AAAI Press, 1994.

M. Dastani, F. S. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and J. Ch.
Meyer. Programming the deliberation cycle of cognitive robots. In Proc. of 3rd
International Cognitive Robotics Workshop (CogRob2002), Edmonton, Alberta,
Canada, 2002.

Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In
Logic Programming, Proceedings of the 1995 International Symposium, Portland,
Oregon, pages 369-384, 1995.

FIPA Communicative Act Library Specification, August 2001. Published
on August 10th, 2001, available for download from the FIPA website,
http://wuw.fipa.org.

K.V.Hindriks, F. S. de Boer, W. van der Hoek, and J. Ch. Meyer. Agent programming
in 3BAPL. Autonomous Agents and Multi- Agent Systems, 2(4):357-401, 1999.

A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, pages 504519, 1994.

A. C. Kakas and P. Moraitis. Argumentation based decision making for au-
tonomous agents. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and
M. Yokoo, editors, Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2003), pages 883-890, Mel-
bourne, Victoria, July 14-18 2003. ACM Press.

A.C. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model
of agency. In R. Lopez de Mantaras and L. Saitta, editors, Proceedings of the
Sizteenth European Conference on Artificial Intelligence, Valencia, Spain (ECAI
2004). 10S Press, August 2004.

R. A. Kowalski and F. Sadri. From logic programming towards multi-agent sys-
tems. Annals of Mathematics and Artificial Intelligence, 25(3/4):391-419, 1999.
R.A. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and
Law Journal, Special Issue on Logical Models of Argumentation, 4:275-296, 1996.
H. Prakken and G. Sartor. A system for defeasible argumentation, with defeasible
priorities. In International Conference on Formal and Applied Practical Reasoning,
volume 1085 of Lecture Notes in Artificial Intelligence, pages 510-524. Springer-
Verlag, 1996.

A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proceed-
ings of the First International Conference on Multiagent Systems, San Francisco,
California, USA, pages 312-319, San Francisco, CA, June 1995.

Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, 1993.
Kostas Stathis, Antonis C. Kakas, Wenjin Lu, Neophytos Demetriou, Ulle Endriss,
and Andrea Bracciali. PROSOCS: a platform for programming software agents in
computational logic. pages 523-528, Vienna, Austria, April 13-16 2004. Austrian
Society for Cybernetic Studies. Extended version to appear in a special issue of
Applied Artificial Intelligence, Taylor & Francis, 2005.

Metareasoning for Multi-agent Epistemic Logics*

Konstantine Arkoudas and Selmer Bringsjord

RPI
{arkouk, brings}@rpi.edu

Abstract. We present an encoding of a sequent calculus for a multi-
agent epistemic logic in Athena, an interactive theorem proving system
for many-sorted first-order logic. We then use Athena as a metalanguage
in order to reason about the multi-agent logic an as object language.
This facilitates theorem proving in the multi-agent logic in several ways.
First, it lets us marshal the highly efficient theorem provers for clas-
sical first-order logic that are integrated with Athena for the purpose
of doing proofs in the multi-agent logic. Second, unlike model-theoretic
embeddings of modal logics into classical first-order logic, our proofs are
directly convertible into native epistemic logic proofs. Third, because we
are able to quantify over propositions and agents, we get much of the
generality and power of higher-order logic even though we are in a first-
order setting. Finally, we are able to use Athena’s versatile tactics for
proof automation in the multi-agent logic. We illustrate by developing a
tactic for solving the generalized version of the wise men problem.

1 Introduction

Multi-agent modal logics are widely used in Computer Science and AI. Multi-
agent epistemic logics, in particular, have found applications in fields ranging
from AI domains such as robotics, planning, and motivation analysis in natu-
ral language [1]; to negotiation and game theory in economics; to distributed
systems analysis and protocol authentication in computer security [2,3]. The
reason is simple—intelligent agents must be able to reason about knowledge. It
is therefore important to have efficient means for performing machine reasoning
in such logics. While the validity problem for most propositional modal logics is
of intractable theoretical complexity', several approaches have been investigated
in recent years that have resulted in systems that appear to work well in prac-
tice. These approaches include tableau-based provers, SAT-based algorithms,
and translations to first-order logic coupled with the use of resolution-based au-
tomated theorem provers (ATPs). Some representative systems are FaCT [6],
KsatC [7], TA [8], LWB [9], and MSPASS [10].

* This research was funded in part by the US Air Force Labs of Rome, NY.

! For instance, the validity problem for multi-agent propositional epistemic logic is
PSPACE-complete [4]; adding a common knowledge operator makes the problem
EXPTIME-complete [5].

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 111-125, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

112 K. Arkoudas and S. Bringsjord

Translation-based approaches (such as that of MSPASS) have the advantage
of leveraging the tremendous implementation progress that has occurred over
the last decade in first-order theorem proving. Soundness and completeness are
ensured by the soundness and completeness of the resolution prover (once the
soundness and completeness of the translation have been shown), while a decision
procedure is automatically obtained for any modal logic that can be translated
into a decidable fragment of first-order logic, such as the two-variable fragment.
Furthermore, the task of translating from a modal logic to the classical first-
order setting is fairly straightforward (assuming, of course, that the class of
Kripke frames captured by the modal logic is first-order definable [11]; modal
logics such as the Godel-Lob logic of provability in first-order Peano arithmetic
would require translation into second-order classical logic). For instance, the
well-known formula [OP A O(P = Q)] = 0@ becomes

A wq . [(V wsa . R(wl,wg) :>P(”UJ2)) AN
(V wp . R(wi,wz) = P(wz) = Q(ws))] = (V w2 . R(wi,w2) = Q(wz))

Here the variables w; and wy range over possible worlds, and the relation R
represents Kripke’s accessibility relation. A constant propositional atom P in
the modal language becomes a unary predicate P(w) that holds (or not) for a
given world w.

This is the (naive) classical translation of modal logic into first-order logic [4],
and we might say that it is a semantic embedding, since the Kripke semantics
of the modal language are explicitly encoded in the translated result. This is,
for instance, the approach taken by McCarthy in his “Formalizing two puzzles
involving knowledge” [12]. A drawback of this approach is that proofs produced
in the translated setting are difficult to convert back into a form that makes
sense for the user in the original modal setting (altough alternative translation
techniques such as the functional translation to path logic can rectify this in
some cases [13]). Another drawback is that if a result is not obtained within
a reasonable amount of time—which is almost certain to happen quite often
when no decision procedure is available, as in first-order modal logics—then a
batch-oriented ATP is of little help to the user due to its “low bandwidth of
interaction” [14].

In this paper we explore another approach: We embed a multi-agent epis-
temic logic into many-sorted first-order logic in a proof-theoretic rather than
in a model-theoretic way. 2 Specifically, we use the interactive theorem proving
system Athena [15] to encode the formulas of the epistemic logic along with the
inference rules of a sequent calculus for it. Hence first-order logic becomes our
metalanguage and the epistemic logic becomes our object language. We then use
standard first-order logic (our metalanguage) to reason about proofs in the object
logic. In effect, we end up reasoning about reasoning—hence the term metarea-
soning. Since our metareasoning occurs at the standard first-order level, we are

2 This paper treats a propositional logic of knowledge, but the technique can be readily
applied to full first-order multi-agent epistemic logic, and indeed to hybrid multi-
modal logics, e.g., combination logics for temporal and epistemic reasoning.

Metareasoning for Multi-agent Epistemic Logics 113

free to leverage existing theorem-proving systems for automated deduction. In
particular, we make heavy use of Vampire [16] and Spass [17], two cutting-edge
resolution-based ATPs that are seamlessly integrated with Athena.

Our approach has two additional advantages. First, it is trivial to translate
the constructed proofs into modal form, since the Athena proofs are already
about proofs in the modal logic. Second, because the abstract syntax of the epis-
temic logic is explicitly encoded in Athena, we can quantify over propositions,
sequents, and agents. Accordingly, we get the generalization benefits of higher-
order logic even in a first-order setting. This can result in significant efficiency
improvements. For instance, in solving the generalized wise men puzzle it is nec-
essary at some point to derive the conclusion Ms V --- V M, from the three
premises Ko (M), Ko (~(M2 V -+ V M,,) = M), and

“(MyV -+ VM) = Kaq(—(MzV -+ V M,))

where M, ..., M, are atomic propositions and « is an epistemic agent, n > 1.
In the absence of an explicit embedding of the epistemic logic, this would have
to be done with a tactic that accepted a list of propositions [Mj - - - M,,] as input
and performed the appropriate deduction dynamically, which would require an
amount of effort quadratic in the length of the list. By contrast, in our approach
we are able to formulate and prove a “higher-order” lemma stating

VP Qa.{~Ka(P),Ka(-Q=P),-Q=Ka(-Q)} - Q

Obtaining the desired conclusion for any given My, ..., M, then becomes a mat-
ter of instantiating this lemma with P — M; and Q — M5 V --- V M,,. We have
thus reduced the asymptotic complexity of our task from quadratic time to con-
stant time.

But perhaps the most distinguishing aspect of our work is our emphasis on
tactics. Tactics are proof algorithms, which, unlike conventional algorithms, are
guaranteed to produce sound results. That is, if and when a tactic outputs a
result P that it claims to be a theorem, we can be assured that P is indeed a
theorem. Tactics are widely used for proof automation in first- and higher-order
proof systems such as HOL [18] and Isabelle [19]. In Athena tactics are called
methods, and are particularly easy to formulate owing to Athena’s Fitch-style
natural deduction system and its assumption-base semantics [20]. A major goal of
our research is to find out how easy—or difficult—it may be to automate multi-
agent modal logic proofs with tactics. Our aim is not to obtain a completely
automatic decision procedure for a certain logic (or class of logics), but rather to
enable efficient interactive—i.e., semi-automatic—theorem proving in such logics
for challenging problems that are beyond the scope of completely automatic
provers. In this paper we formulate an Athenamethod for solving the generalized
version of the wise men problem (for any given number of wise men). The relative
ease with which this method was formulated is encouraging.

The remainder of this paper is structured as follows. In the next section we
present a sequent calculus for the epistemic logic that we will be encoding. In
Section 3 we present the wise men puzzle and formulate an algorithm for solving

114 K. Arkoudas and S. Bringsjord

rep I'eQug I'EPAQap) TEPAQ A R,

I'PAQ Ir'+p r'-Q

_I'tP g _TEQ vop
IFPvQ TFPvQ

repve ILPEQ LPFQ, g

Ir'=Q
LPHQ (L I'FP=Q ItP g
I'FP=Q I'FQ
r-—=P g LPFLp g [Reflea]
I'rP I'+-P LLPFP
_ PP piution) LEPAZP) [T-1]
rur'v-p IFL IrT

Fig. 1. Inference rules for the propositional connectives

the generalized version of it in the sequent calculus of Section 2. In Section 4
we discuss the Athena encoding of the epistemic logic and present the Athena
method for solving the generalized wise men problem. Finally, in Section 5 we
consider related work.

2 A Sequent Formulation of a Multi-agent Epistemic
Logic

We will use the letters P, @, R,..., to designate arbitrary propositions, built
according to the following abstract grammar:

Pu=A|T|L|-P|PAQ|PVQ|P=Q|Ka(P)|C(P)

where A and « range over a countable set of atomic propositions (“atoms”) and
a primitive domain of agents, respectively. Propositions of the form K (P) and
C(P) are read as follows:

Kq(P): agent a knows proposition P
C(P): it is common knowledge that P holds

By a context we will mean a finite set of propositions. We will use the letter
I" to denote contexts. We define a sequent as an ordered pair (I', P) consisting of

Metareasoning for Multi-agent Epistemic Logics 115

K] [T]
I'H [Ka(P = Q)] = [Ka(P) = Ka(Q)] I'-Ka(P)=P

0FP joq [C-E]
I'+C(P) I'+C(P)= Ka(P)

[Ck] [R]

I'rC(P=Q)=[C(P)=C@Q)] I'tC(P)=C(Ka(P))

Fig. 2. Inference rules for the epistemic operators

a context I and a proposition P. A more suggestive notation for such a sequent
is I' F P. Intuitively, this is a judgment stating that P follows from I". We will
write P,I" (or I, P) as an abbreviation for I' U {P}. The sequent calculus that
we will use consists of a collection of inference rules for deriving judgments of
the form I' - P. Figure 1 shows the inference rules that deal with the standard
propositional connectives. This part is standard (e.g., it is very similar to the
sequent calculus of Ebbinghaus et al. [21]). In addition, we have some rules
pertaining to K, and C', shown in Figure 2.

Rule [K] is the sequent formulation of the well-known Kripke aziom stating
that the knowledge operator distributes over conditionals. Rule [Ck] is the cor-
responding principle for the common knowledge operator. Rule [T is the “truth
axiom”: an agent cannot know false propositions. Rule [C] is an introduction
rule for common knowledge: if a proposition P follows from the empty set of
hypotheses, i.e., if it is a tautology, then it is commonly known. This is the
common-knowledge version of the “omniscience axiom” for single-agent knowl-
edge which says that I' - K (P) can be derived from () = P. We do not need to
postulate that axiom in our formulation, since it follows from [C-I] and [C-E].
The latter says that if it is conmon knowledge that P then any (every) agent
knows P, while [R] says that if it is common knowledge that P then it is common
knowledge that (any) agent « knows it. [R] is a reiteration rule that allows us to
capture the recursive behavior of C';, which is usually expressed via the so-called
“induction axiom”

C(P=E(P))=[P=C(P)]

where E is the shared-knowledge operator. Since we do not need E for our
purposes, we omit its formalization and “unfold” C' via rule [R] instead.
We state a few lemmas that will come handy later:

Lemma 1 (Cut)]fFl FPl andFQ,Pl FPQ thenIHUFgFPQ.

Proof: Assume Iy - Py and Iy, P; - P;. Then, by [=-I], we get I F Py = Ps.
Further, by dilution, we have It U I+ P; = P, and I} U I - P;. Hence, by
[=-E], we obtain It U Iy F Ps. a

116 K. Arkoudas and S. Bringsjord

The proofs of the remaining lemmas are equally simple exercises:

Lemma 2 (=-transitivity). If '+ P, = P,, ' Py = P5 then I' - P, = P;.
Lemma 3 (contrapositive). If I' - P =Q then I - -Q = —P.

Lemma 4. (a) O (PyV Py) = (—wPy= Py); and (b) I' b C(P2) whenever
®|_P1:>P2 andFI—C(Pl)

Lemma 5. For all P,Q, and I', T'+[C(P)ANC(Q)]=C(PAQ).

3 The Generalized Wise Men Puzzle

Consider first the three-men version of the puzzle:

Three wise men are told by their king that at least one of them has a white
spot on his forehead. In reality, all three have white spots on their fore-
heads. We assume that each wise man can see the others’ foreheads but
not his own, and thus each knows whether the others have white spots.
Suppose we are told that the first wise man says, “I do not know whether
I have a white spot,” and that the second wise man then says, “I also do
not know whether I have a white spot.” Now consider the following ques-
tion: Does the third wise man now know whether or not he has a white
spot? If so, what does he know, that he has one or doesn’t have one?

This version is essentially identical to the muddy-children puzzle, the only
difference being that the declarations of the wise men are made sequentially,
whereas in the muddy-children puzzle the children proclaim what they know (or
not know) in parallel at every round.

In the generalized version of the puzzle we have an arbitrary number n + 1
of wise men w1, ..., wp41, n > 1. They are told by their king that at least one
them has a white spot on his forehead. Again, in actuality they all do. And they
can all see one another’s foreheads, but not their own. Supposing that each of
the first n wise men, wy, ..., w,, sequentially announces that he does not know
whether or not he has a white spot on his forehead, the question is what would
the last wise man w,,4; report.

For all n > 1, it turns out that the last—(n + 1)5'—wise man knows he is
marked. The case of two wise men is simple. The reasoning runs essentially by
contradiction. The second wise man reasons as follows:

Suppose I were not marked. Then w; would have seen this, and knowing
that at least one of us is marked, he would have inferred that he was the
marked one. But wy has expressed ignorance; therefore, Imust be marked.

Consider now the case of n = 3 wise men wi, wq, ws. After wy; announces
that he does not know that he is marked, ws and w3 both infer that at least
one of them is marked. For if neither wy nor ws were marked, wy would have
seen this and would have concluded—and stated—that he was the marked one,

Metareasoning for Multi-agent Epistemic Logics 117

since he knows that at least one of the three is marked. At this point the puzzle
reduces to the two-men case: both wy and ws know that at least one of them
is marked, and then wy reports that he does not know whether he is marked.
Hence w3 proceeds to reason as previously that he is marked.

In general, consider n 4+ 1 wise men wy, ..., Wy, Wpt+1,n > 1. After the first
J wise men wy, ..., w; have announced that they do not know whether they are
marked, for j = 1,...,n, the remaining wise men w;y1,...,wp4+1 infer that at

least one of them ismarked. This holds for j = n as well, which means that the last
wise man wy,4+1 will infer (and announce, owing to his honesty) that he ismarked.

The question is how to formalize this in our logic. Again consider the case
of two wise men w; and ws. Let M;,i € {1,2} denote the proposition that w;
is marked. For any proposition P, we will write K;(P) as an abbreviation for
K, (P). We will only need three premises:

Sy = C(—=K1(My))
Sy = C(My vV My)
Sg = C(_'MQ = Kl(_‘Mg))

The first premise says that it is common knowledge that the first wise man does
not know whether he ismarked. Although it sounds innocuous, note that a couple
of assumptions are necessary to obtain this premise from the mere fact that w,
has announced his ignorance. First, truthfulness—we must assume that the wise
men do not lie, and further, that each one of them knows that they are all truthful.
And second, each wise man must know that the other wise men will hear the
announcement and believe it. Premise S5 says that it is common knowledge that
at least one of the wise men is marked. Observe that the announcement by the
king is crucial for this premise to be justified. The two wise men can see each
other and thus they individually know M; V M;. However, each of them may not
know that the other wise man knows that at least one of them is marked. For
instance, w; may believe that he is not marked, and even though he sees that
wy is marked, he may believe that wy does not know that at least one of them is
marked, as wy cannot see himself. Finally, premise S3 states that it is common
knowledge that if wy is not marked, then wy will know it (because w; can see
ws). From these three premises we are to derive the conclusion C'(Mz)—that it
is common knowledge that ws is marked. Symbolically, we need to derive the
judgment {S7, Sa, S3} F C(Ms). If we have encoded the epistemic propositional
logic in a predicate calculus, then we can achieve this immediately by instantiating
Lemma 7 below with o — wy, P — M; and @ — My—without performing any
inference whatsoever. This is what we have done in Athena.
For the case of n = 3 wise men our set of premises will be:

S1 = C(—K;(My))

= C(Ml V My V Mg)

C(ﬁ(MQ \Y Mg) = Kl(ﬁ(Mg \Y M3)))
(
(

C(—K2(My))

Sa
S3
Sy
S5 = C(— M3 = Ky(—Ms))

118 K. Arkoudas and S. Bringsjord

Consider now the general case of n + 1 wise men wi,...,wy,wy4+1. For any
i=1,...,n, define

St = C(—K;(M;))
St =C(M;V -V M)
St =C(~(Mig1 V - NV Mpy1) = Ki(=(Mig 1 V -+ V M)

and Syt = C(M,41). The set of premises, 2,11, can now be defined as
np1 ={C(MyV -+ V Mpy1)} U {51, 53}
i=1

Hence 2,41 has a total of 2n + 1 elements. Note that S is the commonly
known disjunction M7 V --- V M, 11 and a known premise, i.e., a member of
2,+1. However, S§ for i > 1 is not a premise. Rather, it becomes derivable
after the it wise man has made his announcement. Managing the derivation
of these propositions and eliminating them via applications of the cut is the
central function of the algorithm below. Before we present the algorithm we
state a couple of key lemmas.

Lemma 6. Consider any agent a and propositions P,Q, and let Ry, Ro, R3 be
the following three propositions:

1. Ry = ~Kq(P);
2. R2 = Ka(—\Q :>P),‘
3. R3 =-Q = Ka(-Q)

Then {Rl A\ RQ A Rg} = Q

Proof. By the following sequent derivation:

{Rl A Ro A RS} R [Reﬂez], N-F4
{RiNR2AR3}+ Ry [Reflex], N-E1, \-E3
{Rl A Ra N R3} F R3 [Reﬂex], N-Eo

{Ri ARz AR3} - Ka(-Q) = Ka(P) 2, K], =-E
{Ri ARz AR3} F-Q = Ka(P) 3
{Rl A Ra A R3} = ﬁKa(P) :>—|—\Q 5, Lemma 3
{Rl ARQARS}F—!—!Q 6
{RiNR2 AR3} FQ 7

PN oUW

Lemma 7. Consider any agent o and propositions P,Q. Define Ry and Rj
as in Lemma 6, let Ro = PV Q, and let S; = C(R;) for i = 1,2,3. Then
{51782; 53} F C(Q)

Metareasoning for Multi-agent Epistemic Logics

Proof. Let R, = =Q = P and consider the following derivation:

119

1. {Sl, SQ, Sg} = Sl [Reﬂea:}
2. {Sl, SQ, Sg} " SQ [Reﬂea:}
3. {51,52,53}FSs [Reflex]
4. PH(PVQ)=(-Q=P) Lemma 4a
5. {51,52,93} FC((PV Q)= (—Q=P)) 4, [C-1]
6. {51,592,93}C(PVQ)=C(—-Q=P) 5, [Ck], [=-F]
7. {Sl,SQ,Sg}FC(—'QéP) 67 2, [:>-E]
8. {31752753}"C(ﬁQjP)iC(Ka(ﬁQip)) [
9. {51,52,53} FC(Ka(—Q=P)) 8,7, [=-F]
10. {R1 AN Ka(-Q =P)ANR3} FQ Lemma 6
11. 0 (R A Ka(-Q = P) A R3) = Q 10, [=-1]
12. {51, 52,83} FC((Ri N Ka(—-Q = P) A R3) = Q) 11, [C-1]
13. {Sl, Sa, S3} = C(Rl N KO((_‘Q = P) N Rg) = C(Q) 12, [CK}, [:>-E]
14. {Sl, Sa, 53} [C(Rl AN Koé(ﬁQ = P) A Rg) 1, 3, 9, Lemma 5, [/\—I]
15. {S1, 52,55} F C(Q) 13, 14, [=-FE]
O
Our method can now be expressed as follows:
@ {S1,53,53};
X &F S5
Use Lemma 7 to derive X;
If n =1 halt
else
For i =2 ton do
begin
& — dU{S:, S},
X' {S1,85,85} S5t
Use Lemma 7 to derive X’;
X @ St
Use the cut on X and X’ to derive X";
PIRES Jidd
end
The loop variable ¢ ranges over the interval 2, ..., n. For any 7 in that interval,
we write & and X* for the values of @ and X upon conclusion of the ith iteration

of the loop. A straightforward induction on i will establish:

Lemma 8 (Algorithm correctness). For any i € {2,...,n},

& = {C(OMyV -V M)} | (59,59}

Jj=1

while X' = &' 1 Sit

Hence, " = 2,11, and X" = ¢" - S0t = 02, F S = 0,01 FC(Myy1),
which is our goal.

120 K. Arkoudas and S. Bringsjord

It is noteworthy that no such correctness argument is necessary in the for-
mulation of the algorithm as an Athena method, as methods are guaranteed to
be sound. Their results are always logically entailed by the assumption base,
assuming that our primitive methods are sound (see Chapter 8 of [20]).

4 Athena Implementation

In this section we present the Athena encoding of the epistemic logic and our
method for solving the generalized version of the wise men puzzle (refer to the
Athena web site [15] for more information on the language). We begin by in-
troducing an uninterpreted domain of epistemic agents: (domain Agent). Next
we represent the abstract syntax of the propositions of the logic. The following
Athena datatype mirrors the abstract grammar for propositions that was given
in the beginning of Section 2:

(datatype Prop
True
False
(Atom Boolean)
(Not Prop)
(And Prop Prop)
(0Or Prop Prop)
(If Prop Prop)
(Knows Agent Prop)
(Common Prop))

We proceed to introduce a binary relation sequent that may obtain between
a finite set of propositions and a single proposition:

(declare sequent (-> ((FSet-0f Prop) Prop) Boolean))

Here FSet-0f is a unary sort constructor: for any sort T, (FSet-0f T) is a new
sort representing the set of all finite sets of elements of T. Finite sets are built
with two polymorphic constructors: the constant null, representing the empty
set; and the binary constructor insert, which takes an element x of sort T and
a finite set S (of sort (FSet-0f T)) and returns the set {z} US. We also have all
the usual set-theoretic operations available (union, intersection, etc.).

The intended interpretation is that if (sequent S P) holds for a set of propo-
sitions S and a proposition P, then the sequent S F P is derivable in the epis-
temic logic via the rules presented in Section 2. Accordingly, we introduce axioms
capturing those rules. For instance, the conjunction introduction rule is repre-
sented by the following axiom:

(define And-I
(forall 7S 7P 7Q
(if (and (sequent 7S 7P)
(sequent 7S 7Q))
(sequent 7S (And 7P 7Q)))))

Metareasoning for Multi-agent Epistemic Logics 121

Note that the lowercase and above is Athena’s built-in conjunction operator, and
hence represents conjunction at the metalanguage level, whereas And represents
the object-level conjunction operator of the epistemic logic.

The cut rule and the common knowledge introduction (necessitation) rule
become:

(define cut
(forall ?S1 7S2 7P 7Q
(if (and (sequent ?7S1 7P)
(sequent (insert 7P 7S2) 7Q))
(sequent (union 7S1 ?752) 7Q))))

(define common-intro-axiom
(forall 7P 7S
(if (sequent null ?7P)
(sequent 7S (Common 7P)))))

The remaining rules are encoded by similar first-order axioms.

We next proceed to derive several lemmas that are useful for the proof. Some
of these lemmas are derived completely automatically via the ATPs that are inte-
grated with Athena. For instance, the cut rule is proved automatically (in about
10 seconds). As another example, the following result—part (b) of Lemma 4—is
proved automatically:

(forall 7S 7P1 7P2
(if (and (sequent null (If 7P1 ?7P2))
(sequent 7S (Common ?P1)))
(sequent 7S (Common 7P2))))

Other lemmas are established by giving natural deduction proofs. For instance,
the proof of Lemma 6 in Section 3 is transcribed virtually verbatim in Athena,
and validated in a fraction of a second. (The fact that the proof is abridged—
i.e., multiple steps are compressed into single steps—is readily handled by in-
voking ATPs that automatically fill in the details.) Finally, we are able to prove
Lemma 7, which is the key technical lemma. Utilizing the higher-order charac-
ter of our encoding, we then define a method main-lemma that takes an arbi-
trary list of agents [a1 ---a,],n > 1, and specializes Lemma 7 with P — M, ,
Qv+— Mg,V - - VM, 6 and o — a; (recall that for any agent o, My signi-
fies that « is marked). So, for instance, the application of main-lemma to the
list [a1,as,as] would derive the conclusion {Si, S2, Sz} C(M,, V M,,), where
S1 =C(=K.,(Mg,)), So=C(My, V My, V M,,), and

SB = C(ﬁ(Maz \ Ma3> = Kal (ﬁ(MUQ vV MU«:;)))

We also need a simple result shuffle asserting the equality I', P, Po = I', P», P;
(ie., T U{PI}U{P;} = DU {P,} U{P.}).

Using these building blocks, we express the tactic for solving the generalized
wise men problem as the Athena method solve below. It takes as input a list of
agents representing wise men, with at least two elements. Note that the for loop
in the pseudocode algorithm has been replaced by recursion.

122 K. Arkoudas and S. Bringsjord

(define (solve wise-men)
(dletrec
((loop (method (wise-men th)
(dmatch wise-men
([_.] ('claim th))
((list-of _ rest)
(dlet ((new-th (!main-lemma wise-men)))
(dmatch [th new-th]
([(sequent context Q2)
(sequent (insert Q1
(insert Q2 (insert Q3 null))) P)]
(dlet ((cut-th
(!derive (sequent
(union
context
(insert Q1 (insert Q3 null)))
P)
[th new-th shuffle cut])))
(1loop rest cut-th))))))))))
(dlet ((init (!prove-goal-2 wise-men)))
('loop (tail wise-men) init))))

Assuming that wi, w2, w3 are agents representing wise men, invoking the method
solve with the list [w1 w2 w3]) as the argument will derive the appropriate result:
23 (Common (isMarked w3)), where {25 is the set of premises for the three-men
case, as defined in the previous section.

5 Related Work

The wise men problem became a staple of epistemic Al literature after being
introduced by McCarthy [12]. Formalizations and solutions of the two-wise-men
problem are found in a number of sources [22,23,24], most of them in simple
multi-agent epistemic logics (without common knowledge). Several variations
have been given; e.g., Konolige has a version in which the third wise man states
that he does not know whether he is marked, but that he would know if only the
second wise man were wiser [25]. Ballim and Wilks [26] solve the three-men ver-
sion of the puzzle using the “nested viewpoints” framework. Vincenzo Pallotta’s
solution [27] is similar but his ViewGen framework facilitates agent simulation.
Kim and Kowalski [28] use a Prolog-based implementation of metareasoning to
solve the same version of the problem using common knowledge. A more natural
proof was given by Aiello et al. [29] in a rewriting framework.

The importance of reasoning about the intentional states of intelligent agents
is widely recognized (see, for instance, the recent work by Dastani et al. on in-
ferring trust [30]). Agent metareasoning and metaknowledge, in particular, is
extensively discussed in “Logical foundations of Artifical Intelligence” by Gene-
sereth and Nillson [24] (it is the subject of an entire chapter). They stress that the
main advantage of an explicit encoding of the reasoning process is that it makes

Metareasoning for Multi-agent Epistemic Logics 123

it possible to “create agents capable of reasoning in detail about the inferential
abilities of and beliefs of other agents,” as well as enabling introspection.?

The only work we are aware of that has an explicit encoding of an epistemic
logic in a rich metalanguage is a recent project [32] that uses the Calculus of
Constructions (Coq [33]). However, there are important differences. First, they
encode a Hilbert proof system, which has an adverse impact on the readabil-
ity and writability of proofs. The second and most important difference is our
emphasis on reasoning efficiency. The seamless integration of Athena with state-
of-the-art provers such as Vampire and Spass is crucial for automation, as it
enables the user to skip tedious steps and keep the reasoning at a high level
of detail. Another distinguishing aspect of our work is our heavy use of tac-
tics. Athena uses a block-structured natural-deduction style not only for writing
proofs but also for writing proof tactics (“methods”). Proof methods are much
easier to write in this style, and play a key role in proof automation. Our empha-
sis on automation also differentiates our work from that of Basin et al. [34] using
Isabelle, which only addresses proof presentation in modal logics, not automatic
proof discovery.

References

1. Davis, E., Morgenstern, L.: Epistemic Logics and its Applications: Tutorial Notes.
(www-formal.stanford.edu/leora/krcourse/ijcaitxt.ps)

2. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about knowledge. MIT
Press, Cambridge, Massachusetts (1995)

3. Meyer, J., Hoek, W.V.D.: Epistemic Logic for Computer Science and Artificial
Intelligence. Volume 41 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press (1995)

4. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional
modal logics: theory and applications. Volume 4 of Studies in Logic and the Foun-
dations of Mathematics. Elsevier (1994)

5. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artificial Intelligence 54 (1992) 319-379

6. Horrocks, I.: Using an expressive description logic: FaCT or fiction? In: Sixth In-
ternational Conference on Principles of Knowledge Representation and Reasoning.
(1998) 636647

7. Giunchiglia, E., Giunchiglia, F., Sebastiani, R., Tacchella, A.: More evaluation of
decision procedures for modal logics. In Cohn, A.G., Schubert, L., Shapiro, S.C.,
eds.: 6th international conference on principles of knowledge representation and
reasoning (KR’98), Trento (1998)

8. Hustadt, U., Schmidt, R.A.: On evaluating decision procedures for modal logic. In:
Fifteenth International Joint Conference on Artificial Intelligence. (1997) 202-209

3 In addition, Bringsjord and Yang [31] have claimed that the best of human reasoning
is distinguished by a capacity for meta-reasoning, and have proposed a theory—
mental metalogic—of human and machine reasoning that emphasizes this type of
reasoning.

124

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

K. Arkoudas and S. Bringsjord

Heuerding, A.: LWBtheory: information about some propositional logics via the
WWW. Logic Journal of the IGPL 4 (1996) 169-174

Schmidt, R.A.: MSPASS. http://www.cs.man.ac.uk/ " schmidt/mspass/ (1999)
Fitting, M.: Basic modal logic. In Gabbay, D.M., Hogger, C.J., Robinson, J.A.,
eds.: Logical foundations. Volume 4 of Handbook of Logic in Artificial Intelligence
and Logic Programming. Oxford Science Publications (1994)

McCarthy, J.: Formalization of two puzzles involving knowledge. In Lifschitz, V.,
ed.: Formalizing Common Sense: Papers by John McCarthy. Ablex Publishing
Corporation, Norwood, New Jersey (1990)

Schmidt, R.A., Hustadt, U.: Mechanised reasoning and model generation for ex-
tended modal logics. In de Swart, H.C.M., Orlowska, E., Schmidt, G., Roubens, M.,
eds.: Theory and Applications of Relational Structures as Knowledge Instruments.
Volume 2929 of Lecture Notes in Computer Science. Springer (2003) 38—67
Cyrluk, D.; Rajan, S., Shankar, N., , Srivas, M.: Effective theorem proving for
hardware verification. In: Theorem Provers in Circuit Design (TPCD ’94). Volume
901 of Lecture Notes in Computer Science., Bad Herrenalb, Germany, Springer-
Verlag (1994) 203222

Arkoudas, K.: Athena. (http://www.pac.csail.mit.edu/athena)

Voronkov, A.: The anatomy of Vampire: implementing bottom-up procedures with
code trees. Journal of Automated Reasoning 15 (1995)

Weidenbach, C.: Combining superposition, sorts, and splitting. In Robinson, A.,
Voronkov, A.; eds.: Handbook of Automated Reasoning. Volume 2. North-Holland
(2001)

Gordon, M.J.C.; Melham, T.F.: Introduction to HOL, a theorem proving envi-
ronment for higher-order logic. Cambridge University Press, Cambridge, England
(1993)

Paulson, L.: Isabelle, A Generic Theorem Prover. Lecture Notes in Computer
Science. Springer-Verlag (1994)

Arkoudas, K.: Denotational Proof Languages. (PhD dissertation, MIT, 2000)
Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. 2nd edn. Springer-
Verlag (1994)

Huth, M., Ryan, M.: Logic in Computer Science: modelling and reasoning about
systems. Cambridge University Press, Cambridge, UK (2000)

Snyers, D., Thayse, A.: Languages and logics. In Thayse, A., ed.: From modal
logic to deductive databases, John Wiley & Sons (1989) 1-54

Genesereth, M., Nilsson, N.: Logical Foundations of Artificial Intelligence. Morgan
Kaufmann (1987)

Konolige, K.: A deduction model of belief. Research Notes in Artificial Intelligence.
Pitman, London, UK (1986)

Ballim, A., Wilks, Y.: Artificial Believers. Lawrence Erlbaum Associates, Hillsdale,
New Jersey (1991)

Pallotta, V.: Computational dialogue Models. In: 10th Conference of the European
Chapter of the Association for Computational Linguistics EACL03. (2003)

Kim, J., Kowalski, R.: An application of amalgamated logic to multi-agent belief. In
Bruynooghe, M., ed.: Second Workshop on Meta-Programming in Logic META90.
(1990) 272-283

Aiello, L.C., Nardi, D., Schaerf, M.: Yet another solution to the three wisemen
puzzle. In: Proceedings of the 3rd International Symposium on Methodologies for
Intelligent Systems. (1988) 398-407

Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring trust. In this
volume.

31.

32.

33.

34.

Metareasoning for Multi-agent Epistemic Logics 125

Yang, Y., Bringsjord, S.: Mental Metalogic: A New, Unifying Theory of Human
and Machine Reasoning. Erlbaum, Mahwah, NJ (2005)

Lescanne, P.: Epistemic logic in higher order logic: an experiment with COQ.
Technical Report RR2001-12, LIP-ENS de Lyon (2001)

Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76 (1988) 95-120

Basin, D., Matthews, S., Vigano, L.: A modular presentation of modal logics
in a logical framework. In Ginzburg, J., Khasidashvili, Z., Vogel, C., Lévy, J.J.,
Vallduvi, E., eds.: The Thilisi Symposium on Logic, Language and Computation:
Selected Papers. CSLI Publications, Stanford, CA (1998) 293-307

Graded BDI Models for Agent Architectures*

Ana Casali!, Tllus Gode?, and Cades Siera?

! Depto. de Sistemas e Informética,
Facultad de Cs. Exactas, Ingenieria y Agrimensura,
Universidad Nacional de Rosario,
Av Pellegrini 250, 2000 Rosario, Argentina
2 Tnstitut d‘Investigacié en Intel-ligéncia Artificial (ITTA) - CSIC,
Campus Universitat Autonoma de Barcelona s/n,
08193 Bellaterra, Catalunya, Espafa

Abstract. In the recent past, an increasing number of multiagent sys-
tems (MAS) have been designed and implemented to engineer complex
distributed systems. Several previous works have proposed theories and
architectures to give these systems a formal support. Among them, one
of the most widely used is the BDI agent architecture presented by Rao
and Georgeff. We consider that in order to apply agents in real domains,
it is important for the formal models to incorporate a model to represent
and reason under uncertainty. With that aim we introduce in this paper
a general model for graded BDI agents, and an architecture, based on
multi-context systems, able to model these graded mental attitudes. This
architecture serves as a blueprint to design different kinds of particular
agents. We illustrate the design process by formalising a simple travel
assistant agent.

1 Introduction

In the recent past, an increasing number of multiagent systems (MAS) have
been designed and mp lemented $o engineer complex dist pbuted systems. Several
p 1eVious works have p rap osed theopes and ajchitectures to give these systems a
fomnal supp ort. Agent theopnes aje essentially sp ecificatiors of agents’ behaviour
exp ressed as the p rgp edies that agents should have. A fopmal 1ep resentation of
the p rgp erties helps the designer to reason about the expected behaviour of the
system [25]. Agent architectures rep resent a middle p oins between sp ecification
and mp lementasion. They identify the main functiors that ultimately dete mine
the agent’s behaviour and define the 1ntedep endencies that exist among them
[25]. Agent theopes based on an 1ntentional stance ate am ong the m st comm on
ones. Intemtional systems descpbe entities whee behaviour can be p redicted

* A preliminary version of this paper, “Modelos BDI graduados para Arquitecturas
de Agentes” (in Spanish), was presented at the Argentine Symposium on Artificial
Intelligence (ASAI’04) and will appear in an especial issue of “Inteligencia Artificial”
(Revista Iberoamericana de Inteligencia Artificial).

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 126-143, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Graded BDI Models for Agent Architectures 127

by the method of att gbuting cejfain mentalistic attitudes such as knowledge,
belief information attitudes, desire, 1ntention, obhgation, conmitment pro-
attitudes, among othes [5]. A well-known 1nsentional system fomal app roach 1
the BDI achitectue p rp sed by Rao and Geogeff [20,21]. This m odel 18 based
on the explicit 1ep esentation of the agent’s behefs (B) used to rep 1esent the
state of the environment, 1ts desies (D) wsed $o 1ep resent the motivatiors of
the agent, and 1ts intentiors (I) used to rep resent the goals of the agent. This
ajchitecture has evolved overtime and 1t has been applied inseveal of the m st
sigmificant multiagent app licatiors develgped up t0 now.

Modelling different 1nsensional notiors by mears of several modahties (B, D,
I) can be very complex if only one logical framework 15 used. In order $o help
1n the design of such complex logical systems Giunchigha et.al. [9] 106 yoduced
the notion of multi-context system (MCS forshop). This framework allows the
defimition of diffeyent foymal comp onents and theiy interrelation. In our case, we
P rp Fe to use separate contexts to rep resent each modality and fopnalise each
context with the m et app rp pate logic apparatus. The inteyactions between
the conp onents aje sp ecified by using 1nter-umt pules, called bridge rules. These
riles ae pad of the deduction machiney of the system. This app roach has
been used by Sabater et.al. [22] and Pasors et.al. [19] tospecify several agent
architectures and papiculady tomodel sgme classes of BDI agents [17]. Indeed
one advantage of the MCS logical app roach to agency modelling 15 that 1t allows
for ather aff oydable comp utational mplementation. For 1rstance, a p ordion of
the framework descpibed 1n [17] 18 being now mplemented using a p rolog multi-
theaded ajchitectuqe [8].

The agent architectures p rgp sed so far mstly deal with two-valued 1nfor
mation. Although the BDI model develgped by Rao and Georgeff exphcitly ac-
knowledges that an agent’s model of the wodd 15 1ncomp lete, by m odelling beliefs
as a set of wodds that the agent knows that 1t might be 1n, 1t makes no use of
Yuaniified infonasion about how p gsible a pagicular wordd 18 0 be the actual
one. Nerther does 1t allow desies and 1nsentiors $o be quantified. We think that
taking 1nto corsideation this graded infoanation could mp rove the agent’s per
fomance. Theye ae a few works that patially addess this ssue and emphasi e
the mp ordance of graded models. Notably, Pasors and Giomgim [17] comsider
the belief ®uantification by using Evidence Theoyy. In theirp rp ssal, an agent
15 allowed to exp 158 185 p1mon on the ehability of the agents 1t 1nteacts with,
and to revise 14s beliefs when they become incorsistent. They set out the m-
p orsance of ®uantifying degrees 1n desires and 1ntentiors, bus this 18 not covered
by their work. Lang et al. [14] p iesent an app roach to a logic of desies, where
the notion of hidden unce gainty of desiyes 18 1nk roduced. Desies are foynal ed
tosupp ot a realistic 1nteraction between the concepts of p reference and plau-
sibility (or nomnality), both 1ep resented by a p re-order elation over the sets of
p ossible wodds. Other works deal with reasoning about 1ntentions 1n unce fain
domairs, as the p rgp swal of Schut et al. [24]. They p esent an efficient 1ntension
recorsideation for agents that interact 1n an uncetainty environment 1n tegns
of dynamics, observability, and non-deteminism.

128 A. Casali, L. Godo, and C. Sierra

All the above mentioned p rgp ssals model patial aspects of the unce fainty
related tomental notiors 1nvolved 1n an agent’s achitectue. We p yesent 1n this
paper a general model for a graded BDI agemns, specifying an ajchitectuse able
10 deal with the environment unce gainty and with graded mental astitudes. In
this serse, belef degiees 1ep resent 1o what extent the agent believes a formula 1s
true. Degiees of p s1t1ve or negative desiie allow the agent soset diffeent levels
of p reference or rejection resp ectively. Intention degiees give also a p yefejence
measure but, 1n this case, modeling the cest/benefis s1ade of of eaching an
agent’s goal. Then, Agents having different kinds of behaviour can be modeled
on the basis of the 1ep resentation and 1nteaction of these thiee attitudes.

This paper s orgamsed as follows: 1n Section 2, we 1 roduce mulfi-context
systems and the geneyal multivalued logic framework for the graded contexts.
Sectiors 3, 4, and 5 p yesent the mental umts of the graded BDI model, that
18 the comtexts for behefs (BC), desiyes (DC), and intentiors (IC). Section 6
outhines two functional contexts forplanmng (PC) and commumcation (CC). In
Section 7, we deal with bpudge rules, we 1llustate the overall yeasoning p rocess
1n Section 8, and finally, we p resent sone conclusiors and futuse hines of work.

2 Graded BDI Agent Model

The architecture p ;esented 1n this papers 1mspiyed by the work of Pasors et.al.
[17] about mulii-context BDI agents. Multi-context systems wee 1nt roduced by
Grunchigha et.al. [9] 10 allow different foymal (logic) comp onents $o be defined
and 1nterrelated. The MCS sp ecification of an agent consairs thee basic comp o-
nents: umts or contexss, logics, and bpudge pules, which channel the p rgpagation
of corsetuences among theopes. Thus, an agent 18 defined as a grouwp of 1mbe
connected units: <{Ci},~€1,ﬂbr>, whee each context C; € {C;},.; 18 the tuple
C; = (L, Ai, A;) where L;, A; and A, are the language, axioms, and 1nfejence
rales yesp ectively. They define the logic for the context and 185 basic behaviour
as comstrained by the axioms. When a theoyy T; € L; 15 associated with each
unis, the mplementation of a pagicular agent 15 complete. Ay, can be under
stood as yules of inference with p emises and conclusiors 1n diffejent contexts,

for 1rstance:
Cl : ’lpv C? 2
Cg 10

mears that if fopnula 9 15 deduced 1n context C7 and fopmula ¢ 13 deduced 1n
context Cy then fopnula 0 15 added to context Cs.

The deduction mechamsm of these systems 15 based on two kinds of 1nfeence
riles; internal pules A; 1ms1de each umt, and budge yales Ay, outside. Internal
rles allow to0 draw comse®uences within a theoyy, while budge rales allow %o
embed jesults from a theoyy 1nko another [7].

We have mental contexts to 1¢p resent beliefs (BC), desires (DC) and 1nten-
tiors (IC). We alko corsider swo functional contexss: for Planmng (PC) and
Conmumcation (CC). The Planner s 1n chage of finding plars to change the

Graded BDI Models for Agent Architectures 129

current woldd 180 another wordd, whe e s gne goal 18 satisfied, and of conp using
the cot associated to the plams. The communication context 18 the agent’s door
10 the external woidd, receiving and sending messages. In summayy, the BDI
agent model 18 defined as:

A, = ({BC,DC,IC, PC,CC}, Ay)

Each context has an associated logic, that 15, a logical language with 18s own
semantics and deductive system. In order to 1¢p reSent and reason about graded
notiors of behefS, desiyes and 1nmtentions, we decide $o use a modal many-valued
app roach. In papiculay, we shall follow the app roach develgped by Hajek et
al. 1n e.g. [12] and [10] whete uncepainty reasomng 15 deals with by defimng
suitable modal theopes overswtable many-valued logics. The basic 1dea 15 the
following. For 1irstance, let us comsider a Belief context where behef degrees are
to be modeled as p robabilities. Then, for each classical (two-valued) fommula
, we corsider a modal fopnula By which 1 1ntep jeted as “¢ 18 p robable .
This modal fopnula By 15 then a fuzzy fopnula which may be more orless tyue,
depending on the p robability of p. Inpagticular, we can take as tpath-value of
By p recisely the p robability of . Moreover, using a many-Vvalued logic, we can
exp 1e5s the govermng axioms of p robability theoyy as logical axioms 1involving
modal fopnulae of the kind By. Then, the many-valued logic machineyy can
be used to reason about the modal fopnulae By, which faithfully respect the
unce ffainty model chsen to 1ep resent the degiees of belef.

In this prop wal, for the mental contexis we chosse the i1nfimte-valued
Lukasiewic logic but anotherselection of many-valued logics may be done for
each umit, according to the measue modeled 1n each case !. Thejefose, 1n this
kind of logical frameworks we shall have, besides the axioms of Lukasiewic
many-Valued logic, a set of axioms corresp onding to the basic p sstulates of a
paricular unce gainty theory. Hence, 1n this app roach, reasoning about p rob-
abilities (or any other uncegainty models) can be done 1n a Veyy elegant way
within a umfomm and ﬂex1b]e logical framework. The same many-valued logical
framework may be used to 1ep ;eSent and reason about degrees of desires and
intentiors, as will be seen 1n detail later on.

3 Belief Context

Thepup e of this context 18 tom odel the agent’s behefs ab out the envirormens.
In order to 1ep esent beliefs, we use m odal many-valued fopnulae, following the
above mentioned logical framework. We comsider 1n this paper the pagicular

! The reason of using this many-valued logic is that its main connectives are based
on the arithmetic addition in the unit interval [0, 1], which is what is needed to deal
with additive measures like probabilities. Besides, Lukasiewicz logic has also the min
conjunction and maz disjunction as definable connectives, so it also allows to define
a logic to reason about degrees of necessity and possibility.

130 A. Casali, L. Godo, and C. Sierra

case of using p robability theoyy as the uncefainty model. Other models might
be used as well by just m odifying the corresp onding axioms.

3.1 The BC Language

To eason abous the credibility of cpsp p rgp 161018, we define a language for
behef 1ep resentation, following Godo et al.’s [10], based on Lukasiewic logic. In
order to define the basic cpsp language, we staps from a classical p rp s1t10nal
language L, defined up on a coumtable set of p rqp os1¥10nal vapables PV and
connectiVes (—, —), and extend 1t to 1ep resent actiors. We take advantage of
Dynamic logic which has been used o model agent’s actiors 1n [23] and [16].
These actiors, the environment t amsfommatiors they cause, and theiy ass ociated
cost must be pap of any situated agent’s belefs set.

The p rgp os1t10nal language L 18 thus extended to Lp, by adding to 1% action
m odalities of the foym [a] where o 15 an action. More concretely, given a set
Iy of symbob 1ep resenting elementayy actiors, the set IT of plams (conp site
actiors) and fopnulae Lp 15 defined as follows:

— IIy C IT (elementayy actiors are plars)

— if o, 8 € II then «; § € II, (the concatenation of actiors 18 also aplan)
— if o, € Il then aU g € IT (non-deteminsiic disjunction)

—1f « € IT then o* € IT (1teation)

— If A s afomula, then A? € IT (tes¥)

—1if pe PV, thenp € Lp

—1if p € Lp then—p € Lp

—1f p,p € Lp thenp — ¢ € Lp

—1if a €Il and ¢ € Lp then [a]p € Lp.

The 1nte p retasion of [a] A 15 “after the execution of a, A is true”

We define a modal language BC' over the language Lp $0 reason about the
belief on cpsp p rgp ss1k1018. To do So, we extend the cpusp language Lp with a
fu y unayy modal gpeator B. If ¢ 15 ap rgp ®1810n1n Lp, the intended meaning
of By 15 that “¢ 15 believable . Fopmulae of BC aje of two types:

— Crisp (non B-modal): they ase the (cpsp) fognulae of Lp, built 1n the usual
way, thus, 1f ¢ € Lp then ¢ € BC.

— B-Modal: they aye built from elementa;y modal fopmulae By, where ¢ 18
cpsp, and $yuth corstants 7, foreach yational r € [0, 1], using the connect1ves
of Lukasiewic many-valued logic:

o If p € Lp then By € BC

o If r € QnNJ0,1] then7 € BC

o If ¥ € BC then® — ¥ € BC and P&V € BC (wheye & and —p,
corresp ond to the conjunction and mplication of Lukasiewic logic)

Other Lukasiewic logic connectives for the modal fopmulae can be defined from
&, —r and 0: =@ 18 defined as & — 0, DAV as P&(P —1 V), PV V¥ as
‘L(‘L@/\ —|L¢)7 and @ = V¥ as (@ —r W)&(g/ —r @)

Graded BDI Models for Agent Architectures 131

Since 1n Lukasiewic logic a fopmula ¢ — 1 ¥ 15 1-tyue iff the tyuth value of
¥ 18 greater or e®ual to that of @, modal fopnulae of the type ¥ —1 By exp 1e8s
that the p robability of ¢ 15 at least r. Fopnulae of the type 7 —r ¥ will be
denoted as (¥, 7).

3.2 Belief Semantics

The semantics for the language BC 5 defined, as usual 1n modal logics, using
a Kppke stpucture. We have added to such styucture a p funciion 1in order to
€p resent the wordd tamsitions caused by actiors, and a p robability measuye p
over wordds. Thus, we define a BC p robabilistic Kppke stpuctue as a 4-tuple
K = (W, e, 1, p) where:

— W 1s a non-empty set of p ssible woids.

—e: VW — {0, 1} p rovides foreach woid a Boolean (§wo-valued) evaluasion
of the p rp s1810nal vapables, that 15, e(p, w) € {0, 1} for each p rgp cs1810nal
vapable p € V and each wordd w € W. The evaluation 13 extended %o
atbitay fognulae 1n Lp as descpabed below.

— 2% — [0,1] 1 a fimtely addifive p robabihity measue on a Boolean
algebra of subsets of W such that for each cpsp ¢, sheset {w | e(p,w) =1}
15 measuable [12].

— p: Iy — 2"*W assigrs to each elementary action a set of pais of wodds
denoting wodd tarmsitions.

Eztension of e to Lp formulae:

e 18 extended to L using classical connect1ves and to fopnulae with actionm odal-
s as [o] A, by defimng p(c; 8) = p(a) o p(B), pla U B) = p(a) U p(B),
pla*) = (p(a))* (ancestral relation) and p(p?) = {(w,w) | e(p,w) = 1}, and
setting e([a] A, w) = min {e(A,w;) | (w,w;) € p(cr)}. Notice that e([o] A, w) =1
iff the evaluation of A 15 1 1n all the wodds w’ that may be jeached through the
action « from w.

Extension of e to B-modal formulae:

e 15 extended to0 B-modal fopnulae by mears of Lukasiewic logic t pash-funcéions
and the p robabilistic 1nte p revasion of behef as follows:

— e(Bp,w) = p({w' € W | e(p,w') =1}), foreach cusp ¢
— e(T,w) =r, forall r € @QNJ0,1]

e(P&V¥, w) = max(e(P) + e(¥) — 1,0)

— e(® —r ¥, w) =min(l — e(P) + ¢(¥), 1)

Finally, the tyuth degree of a fopnula @ 1n a Kypke styucture K = (W, e, u, p)
15 defined as ||| = 1nfpew (P, w).

3.3 BC Axioms and Rules

As mentioned 1n Section 2, to set up an ade®uate axiomat: ation for our be-
lief context logic we need to combine axioms for the cpusp fopmulae, axioms of

132 A. Casali, L. Godo, and C. Sierra

Lukasiewic logic for modal fopnulae, and additional axioms for B-modal for-
mulae according $o the p robabilistic semantics of the B @ erator. Hence, axioms
and pules for the Belef context logic BC aje as follows:

1. Axioms of p rp ss1610nal Dy namic logic for Lp foimulae (see e.g. [11]).

2. Axioms of Lukasiewic logic for modal fopmulae: for imstance, axioms of
Hajek’s Basic Logic (BL) [12] plus the axiom: =—$ — &

3. Probabilistic axioms
B(p — 1) —1 (Bp — By)
Bp=-1B(p A1) =1 Bl AY)
ﬁLBgO = Bﬁ(p

4. Deduction yules for BC are: modus p oners, necessitation for [a] for each
a € I (from ¢ denve [a]y), and necessikasion for B (from ¢ denve By).

Deduction 1 defiped as usual from the above axiogns and pales and will be
denoted by Fpc. Notice that, taking into account Lukasiewic semantics, the
second probabilistic axiom coresp onds to the fimte additivity while the thid one
exp resses that the p robability of - 15 1 minus the p robability of ¢. Actually,
one canshow that the above axiomatics 18 sound and complete with espect to
the 1ntended semantics descubed 1n the p revious subsection (cf. [12]). Namely,
if T 18 a fimte theory over BC and @ 1 a (modal) fognula, then T + @ off
|®]|% =1 1n each BC p robabibistic Kppke stpuctue K model of T (1.e. K such
that |[@||X =1 forall ¥ € T).

4 Desire Context

In this context, we 1epesent the agent’s desijes. Desies 1ep jesent the ideal
agent’s p references regardless of the agent’s curent perception of the environ-
ment and jegardless of the cat 1nvolved 1n actually achieving them. We deem
mp ogant o distinguish what 18 p sitively desired from what 15 not rejected.
According to the works on bip olapty 1ep resemtation of p references by Benfehat
es.al. [2], p s181ve and negative infopnasionmay be modeled 1n the framework of
p ossibibistic logic. Imspired by this work, we suggest to fomalise agent’s desiyes
also as p s1t1ve and negative. Pesitive desies 1ep resent what the agent would
like 10 be the case. Negat1ve des1yes corresp ond to what the agent rejects or does
not want to occur. Both, p ®181ve and negative desiyes can be graded.

4.1 DC Language

The language DC' 15 defined as an extersion of a p rp d1t1onal language L by
introducing two (fu y) modal gpeatos DT and D™. DTy reads as “¢ 15 p 8-
iively desijed and 1ts tyuth degree rep resents the agent’s level of satisfaction
would ¢ become tue. D™ ¢ reads as “p 15 negatively desired and 185 tpath de-
gee 1ep resemss the agent’s measue of disgust on ¢ beconing tyue. As 1n BC

logic, we will use a m odal many-valued logic to fopnalise graded desies. We use

Graded BDI Models for Agent Architectures 133

again Lukasiewic logic as the base logic, but this time extended with a new con-
nective A (known as Baa ’s connective), corsidered also 1n [12]. For any modal
@, 1f & has value < 1 then AP gets value 0; otheywise, if @ has value 1 then
AP gets Vvalue 1 as well. Hence AP becomes a two-Valued (Boolean) foymula.
Therefore, DC fopnulae are of two types:

— Crisp (non modal): fopmulae of L
— Many-valued (modal): they ae builé from elementary modal fomulae DT
and D~ p, where ¢ 15 fyom L, and tath corstants 7 foreach yational r € [0, 1]:
e If p€ L then D™, D p € DC
o If r € @QnNI0,1] then7 e DC
e If oW € DC then ® — ¥ € DC and P&V € DC

As 1n BC, (D, r) denotes r — 1, D.

In this context the agent’s p references will be exp ressed by a theory T con-
taining ¥uantitative exp ressiors about p sit1ve and negative p references, like
(DY ¢,a) or (D™, 3), as well as quahitative exp yessiors hke D) — DT
(resp. D™ — D™), exp ressing that ¢ 15 at least as p referred (1e5p. 1€)ected)
as 1. Inpapiculay (DT ¢;, 1) € T mears that the agent has maximum p jefeence
1n ¢; and 15 fully satisfied 1f 18 15 $pue. While (D1 ¢, o) € T forany o > 0 mears
that the agent 13 indifferens 10 ¢; and the agent doesn’t benefit from the tyush of
¢j. Analogowsly, (D71;,1) € T mears that the agent absolutely rejects ¢; and
thus the states whee 1); 18 t1ue ae totally unacceptable. (D~ ;, 5) € T for any
B > 0 smply mears that 1; 13 not ejected, the same apphes to the fopnulae
not exp licitly included 1n 7T'.

4.2 Semantics for DC

The degree of p s161ve desie for (or level of satisfaction with) a disjuncéion of
goals ¢ V1 15 taken to be the mimmum of the degrees for ¢ and ¥. Intwtively
if an agent desiyes ¢ V @) then 18 15 eady to accept the situation where the less
desired goal becomes tpue, and hence to accept the mimmum satisfaction level
p roduced by one of the two goals. In cont rast the satisfaction degee of reaching
both ¢ and ¢ can bestnctly greaterthan reaching one of them separately. These
are basically the p rperies of the guaranteed possibility measures (see e.g. [1]).
Analogously, we assume the same model for the degrees of negative desie or
ejection, that 15, the jejection degee of ¢ V ¢ 15 taken to be the mimmum of
the degiees of rejection for ¢ and for ¥ sepajately, while nothing p ;events the
ejection level of ¢ A 9 be greater than both.

The DC modek aye Kppke stpuctuyes Mp = (W e,n", 7~) where W and e
ae defined as 1n the BL semantics and 77 and 7~ aje p reference dist pbutiors
ovVer woglds, which aye used to gi1ve semantics top ®181Ve and negative desiyes:

— 7t : W — [0,1] 8 a distabution of p s181Ve p references over the p essible
wodds. In this comtext 77 (w) < 7F(w') mears that w’ 18 moge p refered
than w.

134 A. Casali, L. Godo, and C. Sierra

— 7~ : W — [0,1] 15 a dissubution of negative p references over the p ssible
wordds: 7~ (w) < 7~ (w') mears that w’ 15 more ejected than w.

We mp gse a corsistency condision: 7~ (w) > 0 mphes 7+ (w) = 0, that 15, 1f
w 15 eJected to some extent, 18 cannot be desired. And convessely. The tyuth
evaluation e 15 extended to the non-m odal fopmulae 1n the usual (classical) way.
The extersion tomodal foynulae uses the p refeyence distpbutiors for fopnulae
D~y and DT, and for the yest of modal fomulae by mears of Lukasiewic
connect1Ves, as 1n BC semantics, plus the unayy connective A. The evaluation of
m odal fopnulae only depends on the fopnula itself 1ep esented 1n the p refeence
measue ovVer the wordds wheje the fopmula 13 t1ue and not on the actual wodd
wheye the agent 18 situated:

— e(DYp,w) = mf{x " (w') | e(p,w') = 1}
— e(D7p,w) = mf{r~ (w') [e(p,w') =1}

1,1f e(P,w) =1
— (A%, w) {O, othe wise.

As wsual, by convension we take 1nf) = 1 and thas e(DT L, w) =e(D~L,w) =1
forallw € W.

4.3 DC Axioms

In asmilar way as 1n BC, to axionati e the logical system DC we need to com-
bine classical logic axioms for non-m odal fopnulae with Lukasiewic logic axigms
extended with A form odal fopnulae. Aks o, additional axions chayacten 1ng the
behaviour of the modal geatos DT and D~ are needed. Hence, we define the
axions and yules for the DC logic as follows:

1. Axigns of classical logic for the non-m odal fopnulae.

2. Axioms of Lukasiewic logic with A (cf. [12]) for the modal fommulae.

3. Axioms for DV and D~ over Lukasiewc: logic:

DY(AV B)=D*AAD*'B

D (AVB)=D-AAD B

—\LA(D+A A DiA) — —\L(VDiA&VDJrA), whee V 8 —‘LA—‘LQ.
D*(L)

D—(1)

4. Rules aje: modus p oners, necessitation for A, and 1nt roduction of D' and
D~ for mpheatiors: fron A — B depve D¥B — DYA and D™ B —p,
D™ A.

Notice that the two it axiomns 1n wem (3) define the behaviour of D™ and

D% with yespect to disjunctions, while the thiyd axign establishes that 1t 13 not
p osible to have at the same time p 1t1ve and negative desies over the same

2 Notice that e(V®,w) = 1 if e(®,w) > 0, and e(VP, w) = 0 otherwise.

Graded BDI Models for Agent Architectures 135

fommula except 1if the fopmula 15 a contjadiction. In that case notice that the an-
tecedent of the axiom becomes false. Finally, the two 1nference rules state that
the degiee of desie 15 monotonically decreasing with respect $o logical mp hica-
t1on. This axignatics 15 correct with respect to the above defined semangics, and
the conjecture 1 that 1t 15 complete too.

5 Intention Context

In this context, we rep resent the agent’s intentiors. We follow the m odel 11t ro-
duced by Rao and Geogeff [20,21], 1n which an 1ntention 15 corsidered a funda-
mental p ro-attisude with an explicit ep resentation. Intentions, as well as desiyes,
€p resent the agent’s p references. However, we corsider that intentiors cannot
depend just on the benefit, orsatisfaction, of yeaching a goal ¢ 1ep resented 1n
D%, but ako on the wodd’s state w and the cost of trarsforning 1t inko a wodd
w; wheye the fognula ¢ 18 tyue. By allowing degrees 1n intentiors we 1ep resent
a measure of the cost/benefit relation 1nvolved 1n the agent’s actiors towayds
the goal. The p 1t1ve and negative desires are used as p ro-active and restpactive
took espectively, 1n order toset intentiors. Note that intentiors depend on the
agent’s knowledge about the wordd, which may allow or not the agent toset a
plan to change the word 1nto a desiyed one. Thus, if in a theoyy T' we have the
fopnula Iy — Iy then the agent may t13 ¢ before ¢ and 1t may not t1y ¢ 1f
(I$,6) 18 afopnula 1n T and 6 < Threshold. This situation may mean that the
benefit of getting ¢ 15 low or the cost 1 high.

5.1 IC Language

We define 1ts syntax 1n the same way as we did with BC' (except for the dynamic
logicpat), starding with a basic language L and 1ncoip orating a modal g eator
1. We use Lukasiewic multivalued logic $o 1ep resent the degiee of the intentions.
As 1n the othey contexts, if the degree of Iy 15, 18 may be corsidered that the
trath degiee of the exp yession “p 15 intended 15 §. The 1ntention tomake ¢ t1ue
must be the corsefuence of finding a feasible plan «, that pemnits to achieve a
state of the world where ¢ holds.

The value of Ty will be computed by a budge ule (see (3) 1n next Section
7), that takes 1nto account the benefit of eaching ¢ and the cost, estimated by
the Planney, of the p ssible plars towayds 1.

5.2 Semantics and Axiomatization for IC

The semantics defined 1n this conmtext shows that the value of the 1ntentions
depends on the fopmula 1ntended to bang about and on the benefit the agent
gets with 15. It also depends on the agent’s knowledge on p ssible plarms that
may change the word 1nto one wheye the goal 15 t1ue, and their ass ociated cost.
This last factor will make the semantics and axiomat: ation for IC sonewhat
different from the p jesented forp sitive desiyes 1n DC.

136 A. Casali, L. Godo, and C. Sierra

The models for IC are Kuapke styuctues K = (W, e, {my bwew) where W
and e ae defined 1n the usual way, and foreach w € W, 7, : W — [0,1] 5 a
p ossibibity dist pbution whee 7, (w’) € [0,1] 13 the degree on which the agent
may t to reach the state w’ fron the state w.

The tyath evaluation e : V x W — {0,1} 15 extended to the nonmodal
formulae 1n the usual way. It 18 extended tomodal fopnulae using Lukasiewic
semantics as e(Ip,w) = N, ({w' | e(p,w’) = 1}), where N, denotes the necessity
measue ass ociated to thep esibihity dist gbution 7, defined as N, (S) = 1nf{1—
Tw(s) | s € S}. A sound and complete axignatics for the I gperator, 13 defined
i asmilar way as for the p revious mental g eatos but now taking the axioms
corresp onding to necessity measues (cf. [12]), that 15, the following axioms:

1. Axigns of classical logic for the non-m odal fojnulae.
2. Axioms of Lukasiewic logic for the modal fopmulae.
3. Axioms for I over Lukasiewc: logic:
I(p — ¥) — (Ip — It)
-I(1)
I Np) = (I A1)
4. Deduction rules are modus poners and necessisasion for I (from ¢ denve
Ip).

6 Planner and Communication Contexts

The nature of these contexts 13 functional. The Planner Context (PC) has to
build plars which allow the agent to move from 1ts curent wodd to another,
wheje a given fopnula 18 satisfied. This change will indeed have an associated
cat according to the actiors 1nvolved. Within this context, we p rqp ose to use a
fist oxderlanguage restycted so0 Horn clauses (PL), wheye a theoyy of planmng
includes the following sp ecial p redicates:

— action(a, P, A, ¢,) where o € Il 18 an elementary action, P C PL 15 the
set of pecondisiors; A C PL aye the p stcondibiors and ¢, € [0,1] 15 the
nognalised cest of the action.

— plan(p, o, P, A, cq, 1) where a € IT 18 a comp s1ke action 1€p 1eSenting the
plan to achieve ¢, P aje the p re-conditiors of o, A are the p st-conditions
p € A, ¢y 18 the nomali ed cost of a and r 15 the behef degee (> 0) of
actually achieving ¢ by perfomningplan . We assume that only one 1mstance
of this p redicate 15 generated per foqmula.

— bestplan(p, a, P, A, ¢y, r)smilario thep evious one, but only one 1rstance
with the best plan 18 generated.

Each planmust be feasible, that 15, the current state of the wordd must satisfy
the p reconditiors, the plan must make tue the p git1ve desie the plan 18 build
for, and cannot have any negative desire as p st-condition. These feasible plas
are deduced by a budge yule among the BC, DC and PC contexts (see (2) in
the next Section 7).

Graded BDI Models for Agent Architectures 137

The conmumcasion unit (CC) makes 1t p ssible to encapsulate the agent’s
imsernal st puckure by having a um®ue and well-defined 1nte face with the envi-
ronment. This umt also has a fist order language restpucted to Horn clauses.
The theoyy 1151de this context will take caje of the sending and jeceiving of
messages to and fron other agents 1n the Mult1 Agent society whee our graded
BDI agents live. Both contexts use jesolution as a deduction method.

7 Bridge Rules

For our BDI agent model, we define a collection of basic budge rules $oset the
imterelatiors between contexis. These pules are 1llustiated 1n figue 1. In this
section we conment the m @t elevant ones.

The agent’s knowledge ab out the wodd’s state and about actiors that change
the wodd, 13 1méroduced from the behef context 1nto the Planner as fist oder
formulae [.]:

B: By
P [By] M

Then, from the p ®1t1ve desires, the belefs of the agent, and the p wsible
tramsfommatiors using actiors, the Planner can bwild plams. Plars are gener
ated from actiors, to fulfill p sitive desies, but avoiding negative desiyes. The
following bpadge rule among D, B, and P contexts does this:

D :V(D%p),D: (D, threshold), P : action(a, P, A, c),
B: (B([a]p),r), B : B(A —)
P :plan(p,a, P, A, c,r)

(2)

As we have p eViously mentioned, the intention degree tades off the benefit
and the cost of eaching a goal. There 18 a buadge yale that 1nfes the degiee of
I for each plan « that allows to achieve the goal. This value 15 deduced from
the degree of DT and the cost of aplan that satisfies desire ¢. This degiee 1
calculated by function f as follows:

D : (D%p,d), P :plan(p,a, P, A, c,T)

Diffeent functiors m odel diffeent 1ndividual behaviguss. For example, 1f we
comsider an equilibrated agent, the degree of the intention to bang about ¢,
under full belief 1n achieving ¢ afterpefoming o, may depend e®ually on the
satisfaction that 18 bpiangs the agent and inthe co8t comsidenng the complement
t0 1 of the nommalised ct. So the function might be defined as

(3)

fld,e;r) =r(d+(1-¢))/2.

In fact, g1ven the plan P for the goal ¢, with desiie level d and(nommah ed) cst
¢, we can think of u = (d 4 (1 — ¢))/2 as the utility of reaching ¢ by mears of

138 A. Casali, L. Godo, and C. Sierra

the plan P. The intention degee as computed above 15 thennothing but 7 - u,
that 15, the utility v muliphied by the p robabilhity r of jeaching ¢ after the plan
15 executed. This 15 actually the expected utility of reaching ¢ by mears of the
plan P if one comsides a usility value of 0 when the plan P does not reach .

In BDI agents, biadge rales have been also used to detegnine the relation
ship between the mental attitudes and the actual behaviour of the agent. Well-
established sets of jelasiors for BDI agents have been 1densified [21]. If we use
the strong realism model, the set of intentions 15 a subset of the set of desiyes,
which 1n turn 13 a subset of the behefs. That 15, 1f an agent does not beleve
something, 1t will neither desiye 1t nor 1ntend 1% [20]:

B: By andD.ﬂDzZ) @)
D :-Dy I:-Iy
We also need bpdge rales to establish the agent’s inteyactiors with the en-
Vironment, meanng that if the agent intends ¢ at degiee imar, Where imqr 19
the maxmum degee of all the intentiors, then the agent will focus on the plan
-bestplan- that allows the agent to reach the m @t intended goal:

I:(Ip,imaz), P : bestplan(p, a, P, A, cq, 1)

C : C(does(a))
Through the comumnication unit the agent pejceives all the changes 1n the
envViroment that aye 1int roduced by the following budge yule 1n the belief context:

(5)

C:p
B:Bj
Figue 1 shows the graded BDI agent p rop osed with the diffeent contexis
and the bpadge rules jelating them.

(6)

Fig. 1. Multicontext model of a graded BDI agent

Graded BDI Models for Agent Architectures 139

8 Example of a Graded BDI Agent for Tourism

Supp e we want to 1mstuct our s1avel agent to look for a one-week holhiday
destination package. We 11styuct the agent with two desiyes, fis and mose
mp orsans, we want to 1s%, and second we want to Visis new places (VisitNP).
We yestqict 185 exploration range as we do not want to tavel more than 1000
kms from Rosapo, where we hive. Top rp se a destination (plan) the agent will
have to take 1nbo account the benefit (with yespect to rest and so visisNP) and
the cost of the tavel. The agent will corsuls with a $1avel agency that will give a
number of plars, that convemently placed 1n the planner context will dete mine
the final set of p rp wals. In this scenapo we have the following theopes 1n the
BC, DC, and PC contexts (IC has no 1mtial theory):

D context: The agent has the following p os1t1ve and negative desiyes:

- (D% (rest),0.8)

(D“‘(msthP) 0.7)

- (DT (rest AvisitNP),0.9)

- (D~ (distance > 1000km),0.9)

B context: This theory contairs knowledge about the relationshyp between p os-
sible actiors the agent can take and fopnulae made tue by theiy execusion. In
this case, actiors would be traveling to diffeent destinatiors. For this example
we corsider only six destinatiors:

IIy = {CarlosPaz, Cumbrecita, Bariloche, VillaGesell, M ardel Plata, PtoMadryn}.

Then, we 1ep jesent the agent’s beliefs about Visiting new places and jesting.
Inpagiculay, we may corsider the degree of B([a]visitNP) as the p robability
of visitNP after traveling to . According to the places we know 1n each
destination and the yemaining places to Visit 1n each destination, we give our
travel agent the following beliefs:

Cumb jecita] visitNP), 1)
Cade Pa |visiiNP), 0.3)
Banloche] visisNP), 0.7)
Villa Gesell] visitNP), 0.6)
Mar del Plata]visisNP), 0.3)
Pto Mad iy n|visitNP), 1)

EEEEEE

The agent needs to assess als o behefs about the p ssibility that a destination
dfes to rest. In this case the degree of B([a]Rest) 1 1ntep reted as the
p robability of yesting in a. These behefs are deteqmined by the charactepstics
of the destination beach, mountairs, big or a small city, etc and taking into
account ourpesonal Views:

- (B([Cumb ecita]Rest), 1)
- (B([Cads Pa]Rest), 0.8)

140 A. Casali, L. Godo, and C. Sierra

Baloche]Rest), 0. 6)
Villa Gesell|Rest), 0)
May del Plata]Rest), 0.5)
Pto Mad iy n|Rest), 0.7)

SEED

We assume hee that, foreach action «, the p ss1t1ve desies are stochastically
indep endent, so we add to BC an app rqp pate infeence rale:
(Bla]Rest, r), (Bla]visit NP, s)
(Bla](Rest A visitN P),r - s)
P Context A sepes of elementayy actiors:

- action (Cumbecita, {cet = 800},{dist =500 km }, 0.67)

- action (Cade Pa , {cot = 500},{dist = 450 km}, 0.42)

- action (Bauloche, {cat = 1200},{dist = 1800 km },1)

- action (Pto Madn, {cest = 1000},{dist =1700 km }, 0.83)
(
(

_ action (Villa Gessell, {cas¢ = 700},{dst =700 km}, 0.58)
- action (Mar del Plata, {cost = 600},{dist =850 km }, 0.5)

Once these theopes are defined the agent 13 eady to eason 1n order to dete
mine which Intention to adgt and which plan 1 associated with that intention.
We follow g1ve a byef schema of the diffejent steps 1n this p rocess:

1. The desires are passed from DC to PC.

2. Within PC plans for each desire are found.
Staping fron the p gitive desies the planner looks for a set of different
destination plas, taking 1nio comsideation the behefs of the agent about
the p sibihities of satisfying the goals st and VisuNP through the
different actiors. Using the jestpction 1méroduced by the negative desie:
(D~ (dist > 1000km),0.9) the planner rejects plams to Banloche and to Pto
Mad yyn, because their p st-condisiors make tyue (dist > 1000km) which
18 strongly ejected (0.9). Therefore, wsing the budge rule (2), plams ae
generated for each desie. For imstance, for the mest p referred desige, 1.e.
rest A visit N P the following plams are geneated:

plan(rest A visitN P, Cumbrecita, {cost = 800}, {dist = 500km},0.67,1)
plan(rest A visitN P, CarlosPaz,{cost = 500}, {dist = 450km},0.42,0.24)
plan(rest Avisit N P, VillaGessell, {cost = 700}, {dist = 700km}, 0.58,0.48)
plan(rest A visitN P, Mardel Plata, {cost = 600}, {dist = 850km},0.5,0.15)

3. The plans determine the degree of intentions.
Using budge rule (3) and the function f p rp ®ed for an equilibrated agent
the I comtext calculates the 1mtention degee for the diffeent destinasiors.
Since f 15 monotomcally 1ncreasing with jespect tod, 1t 15 enough to corsider
the m st p referred desired, 1.e. rest A visitNP. Hence, rest A visitNP 18
p referied to a degree 0.9, wsing f(d, b, c) = b(0.9+ (1 — ¢))/2 we success1Vely
have for a € {Cumbrecita, CarlosPaz,VillaGessell, Mardel Plata}:

Graded BDI Models for Agent Architectures 141

(rest A visitN P),0.615),
(rest A visitN P),0.1776),
(rest A visitN P),0.3168),
(rest A visitNP),0.105).

We get a maxmal degree of intention for rest A visitN P by the plan cum-
brecita, of 0.615.

4. A plan is adopted.
Finally, by mears of budge rule (5), the action @ = Cumbrecita 18 selected
and passed to the Commumcation context CC.

9 Conclusions and Future Work

This paper has p jesented a BDI agent m odel that allows to explhicitly rep resent
the uncepainty of belefs, desiyes and intendiors. This graded ajchitectue 15
sp ecified using multicontext systems and 15 general enough to be able tospecify
different sypes of agents. In this work we have used a different context for each
attitude: Behef, Desie and Intention. We used a specific logic for each ums,
according to the attitude rep resented. The Lukasiewic multivalued logic 15 the
framework chsen to fopnalise the degiees and we added the corresp onding ax-
1omnatic 1n order to rep reSent the uncegainty behavigur as p robability, necessity
and p essibility. Othey measues of uncegainty might be used 1n the diffeent
umits by simply changing the corresp onding axiomasic. Adding concete theomnes
to each contexs, paiculay agents may be defined using our context bluep pnts.
The agent’s behaviouyis then deteimined by the diffeent unce gainty measuyes
of each context, the specific theones established for each umt, and the bpndge
rles. An ssue of curent research 15 t0 look forp ossible alternative axiomatic
modelings of desires and 1ntentiors, and theiy mplicatiors 1n the budge yules
which deal with them, and check how they can als o in*uence the agent’s behav-
10r- Besides, the m odel 1nt roduced, based on a muliiconsexs sp ecification, can be
easily extended 1o include othermental attitudes.

As for future work, we are cormsidepng two diectiors. On the one hand we
want to extend ourmuliicontext agent model to a muliiagent scenagio. We plan
t0 do this by introducing a social context 1n the agent ajchitecture to deal with
all aspects of social relatiors with otheragents. Inpagsicular to e®up this social
comtext with a good logical model of $yust 15 Very mp oant to allow the agens
to infer behefs from other agents 1nfonation. Interesting models of tust are
Liau’s logic of Behef, Infomation and Trust (BIT) [15] 1n the extersion of this
model descubed 1n [4] 1n this volume.

On the other hand, from an computational p ant of View, our idea 18 to
mp lement each unit as p rolog thiead, e®upped with 1#s own meta-intep reter.
The meta-intep rever pup e will be 1o manage 1nterthiead (1nter-context)
conmumnication, 1.e. all p rocesses jegarding budge yule fipng and assersion of
bpdge rule conclusiors 1into the corresp onding contexts. This mplementation
will supp ot both, the genenc defimtion of graded BDI agens aychitectures and

142 A. Casali, L. Godo, and C. Sierra

the specific 1m8tances for pagicular types of agents. The mplementation will
alo allow us to expepment and vahdate the fopnal m odel p resented.

Acknowledgments. Llus Godo acknowledges paial supp of by the Spanish
p roject MULOG, TIN2004-07933-C03-01, and Cades Sierma acknowledges par
t1al supp ot by the Spansh p roject WEBI2, TIC2003-08763-C02-00.

References

1. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar Possibilistic Representa-
tions. In Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence
(UAI 2002): pages 45-52. Morgan Kaufmann 2002.

2. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion
of preferences in the possilistic Logic framework. In: Proceedings of the 8th In-
ternational Conference on Principle of Knowledge Representation and Reasoning
(KR-2002), pages 421-448, 2002.

3. Cimatti, A., Serafini, L.: Multi-Agent Reasoning with Belief Contexts: the Ap-
proach and a Case Study. In: M. Wooldridge and N. R. Jennings, eds.: Intelligent
Agents: Proceedings of 1994 Workshop on Agent Theories, Architectures, and Lan-
guages, number 890 in Lecture Notes in Computer Science, pages 71-5. Springer
Verlag, 1995.

4. Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring Trust. In this
volume.

5. Dennet, D.C.: The Intentional Stance. MIT Press, Cambridge, MA, 1987.

6. Esteva, F., Garcia, P., Godo, L.: Relating and extending semantical approaches to
possibilistic reasoning. International Journal of Approximate Reasoning, 10:311-
344, 1994.

7. Ghidini, C., Giunchiglia, F.: Local Model Semantics, or Contextual Reasoning =
Locality + Compatibility. Artificial Intelligence,127(2):221-259, 2001.

8. Giovannucci, A.: Towards Multi-Context based Agents Implementation. IITTA-CSIC
Research Report, in preparation.

9. Giunchiglia, F., Serafini, L.: Multilanguage Hierarchical Logics (or: How we can do
without modal logics). Journal of Artificial Intelligence, vol.65, pp. 29-70, 1994.

10. Godo, L., Esteva, F. and Hajek, P.: Reasoning about probabilities using fuzzy
logic. Neural Network World, 10:811-824, 2000.

11. Goldblatt, R.: Logics of Time and Computation, CSLI Lecture Notes 7, 1992.

12. Hajek, P.: Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer,
1998.

13. Jennings, N.R.: On Agent-Based Software Engineering. Artificial Intelligence
117(2), 277-296, 2000.

14. Lang, J., van der Torre, L., Weydert, E.: Hidden Uncertainty in the Logical Rep-
resentation of Desires International Joint Conference on Artificial Intelligence,
IJCAI 08, Acapulco, Mexico, 2003.

15. Liau, C.J.: Belief, Information Acquisition, and Trust in Multiagent Systems - a
modal formulation. Artificial Intelligence 149, 31-60, 2003.

16. Meyer, J.J.: Dynamic Logic for Reasoning about Actions and Agents. Workshop
on Logic-Based Artificial Intelligence, Washington, DC, June 14-16, 1999

17.

18.

19.

20.

21.

22.

23.

24.

25.

Graded BDI Models for Agent Architectures 143

Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by argu-
ing. Journal of Logic and Computation, 8(3): 261-292, 1998.

Parsons, S., Giorgini, P.: On using degrees of belief in BDI agents. Proceedings
of the International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, Paris, 1998.

Parsons, S., Jennings, N.J., Sabater, J., Sierra, C.: Agent Specification Using Multi-
context Systems. Foundations and Applications of Multi-Agent Systems 2002: 205-
226, 2002.

Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In
proceedings of the 2nd International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR-92), pages 473-484 (ed R. Fikes and E. Sandewall),
Morgan Kaufmann, San Mateo, CA, 1991.

Rao, A., Georgeff, M.: BDI agents: From theory to practice. In proceedings of the
1st International Conference on Multi-Agents Systems, pp 312-319, 1995.
Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering executable agents
using multi-context systems. Journal of Logic and Computationl12(3): 413-442
(2002).

Sierra, C., Godo,L., Lépez de Mantaras, R., Manzano, M.: Descriptive Dynamic
Logic and its Application to Reflective Architectures. Future Generation Computer
Systems, 12, 157-171, 1996.

Schut, M., Wooldridge, M., Parsons, S.: Reasoning About Intentions in Uncertain
Domains Symbolic and Quantitative Approaches to Reasoning with Uncertainty.
6th ECSQARU 2001, Proceedings, pages 84-95, Toulouse, France, 2001.
Wooldridge, M., Jennings, N.R.: Intelligent Agents: theory and practice. The
Knowledge Engineering Review, 10(2), 115-152, 1995.

Inferring Trust
Mehd: Dastam', Andreas Her 1g2, Jops Hulstyyn®, and Leende van der Tore?

! Utrecht University, The Netherlands
mehdi@cs.uu.nl
2 IRIT, Toulouse, France
herzig@irit.fr
3 Vrije Universiteit, Amsterdam, The Netherlands
jhulstijn@feweb.vu.nl
4 CWI, Amsterdam, The Netherlands
torre@cwi.nl

Abstract. In this paper we discuss Liau’s logic of Belief, Inform and
Trust (BIT), which captures the use of trust to infer beliefs from ac-
quired information. However, the logic does not capture the derivation
of trust from other notions. We therefore suggest the following two ex-
tensions. First, like Liau we observe that trust in information from an
agent depends on the topic of the information. We extend BIT with a
formalization of topics which are used to infer trust in a proposition
from trust in another proposition, if both propositions have the same
topics. Second, for many applications, communication primitives other
than inform are required. We extend BIT with questions, and discuss
the relationship with belief, inform and trust. An answer to a question
can lead to trust, when the answer conforms to the beliefs of the agent.

1 Introduction

Tyust 18 anssue which emejges inmany subajeas of agificial intelligence, such as
inmultiagentsystems, yep ukationsystems, e-1m5818uk1018, and elect ronic comme yce
[1]. Liau [2]p rop c5es anelegant,smmple, but exp ess1vem odal logic as anextersion
of multi-agent epistemic logic. The thyee main ingredients are modal peratos
for behef (B), infomn (I), and $yust (T'). The central axion exp yesses that if an
agent t usts anothe ragent with jespect toap rg ®1%1on, and 1t has been 1infopmed
by that agent that the p r@ ®1810n 15 tue, then 1t beleves that p r@ 18100
The logic explairs the corse®uences of §yust, but 1t does not explain whee tfust
comes from. The only gtional axiom discussed by Liau that depVes p s1t1ve § pust
fopnulas 15 s o-called t rarsfeabihity, which says that $ ust 1n one agent can lead to
trust inanothe ragent with jesp ect tothesamep rgp os1t1on. Inthispap ey, westudy
two othey ways 1n which tust can be depved. We do this by fist enpching Liau’s
framework with §gp1cs and @uestiors, and thenby 1nvestigating the following 1ssues.

1. How to uwse tgics to infer tpust? Like Liau we obserVe that $1ust in 1n-

fopmation depends on the tic of the infopnation. We extend BIT with a

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 144-160, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Inferring Trust 145

fommali ation of $gics. Tpics can be used to infer t19st 1n a p rgp oS1t10n
from tpust 1n anotherp rgp ss1810n, if both p rp os1810m8 have the same tpics.

2. How 0 use commumcation to infey $ust? For many applicatiors, commu-
nication p pmisives other than infoin ae re¥ured. We extend BIT with
Yucsiiors and discuss the relatiorshp with belef, infoin and trust. An an-
swerto a question can also lead to tyast, when an agent tests another agent
by ®uestioning him and the arswer confoims o the beliefs of the agent.

Wefomali etgics and®uesiions inte gns of non-nomalm odal g eyatos. Toobtain
asmpleaxiomat1 ation of oursemansically defined op ejatos we re-fopmah e them
1nte s of g eatoss from nognalm odallogic usingatech m¥ueknownas simulation.
MozreoVer, Liau uses a non-nommalm odal logic tofommal e tyust, 1.e., his notion of
$ 118t 18 not clsed undertautologies, norunderconjunction normp lication: agent
1 does not necessaply tust that T, tpust that ¢ A ¥ does not mply syust shat ¢,
and validity of ¢ D 1) does not entail that t yust that ¢ mp lies § pust that ¢. In order
towork ina unifogn and simple framework we als osimulate the non-noymal t fust
@ erator, uwSing a combination of nommalm odal logic gpematos. The reductiors or
simulatiors use the fact that “ nognalm odal logics cansmmulate all othe$ [3, 4].

The layout of this papers as follows. In Section 2 we 1néroduce the ranning
examp le. In Section 3 we repeat and discuss Liaw’s BIT logic, and we fopmal e
the runmng example 1n 1%. In Section 4 and 5 we 1nt roduce tgpics and ®uestiors,
as well as the p pnciples pegnitting to infer trust that can be based on them.

2 Running Example

We use the following example $om ot1vate and 1llustate ourextersiors of Liau’s
logic.

Agent i wams to know the intejest pate, which 15 of vital mp ortance for
his p ortfolio management. He has found thiee web-services s1, so and s3 that
p resent financial infopmation, but he does not know whether they dehiver up %o
date 1infopnation, or whether the infognation 1s correct at all. In othey words,
agent ¢ does not know which web-service to tyast. Supp e agent ¢ knows the
latest exchange jates for the euyo agairst the dollay, and asks the web-sepvices
about this piece of infopnation. If they do not p rovide the correct infopnation,
then the agent concludes that the web-serVices aje not tpustworthy. Otheywise,
if they supply the correct exchange ate, then the agent tusts them with jesp ect
$0 financial infopmation. Thus he then knows whan to ask about the 1nteest
ate, 1n order o use this piece of infopmation 1n his p ofolio managemens. !

1 We assume that the web-service is not a strategic player, in the sense of Goffman’s
strategic interaction [5], that is, we assume that the web-service does not have some-
thing to gain by making you believe that it is trustworthy but not being so. In
this sense this example is less complex than issues around trust found in electronic
commerce.

146 M. Dastani et al.

In this paper, we 1gnore the dynamics and tme aspects? mmvolved 1n this
example and discuss the fopnal ation of thiee aspects of this example.

1. F18% we exp 1ess the example 1n Liau’s BIT logic. What can be said theye 18
that
— 1f the agent tusts the web-seyvice, then he believes what he 15 being
infopned abous;
— 1f a web-seyVice has infopmed the agent about somnething 1t beheves 1o
be false, then the agent does not $ust the web-service.

2. To relate the fuestion about exchange yates with the ®uestion ab out inteest
rates, we 1nt roduce the notion of $gpic. Both exchange and 1ntejest jates have
the tp1c of financial infopmation. So, when the web-seyvice can be tusted on
exchange ates, 18 can be tyusted on the whole tpic of financial infopnasion,
and therefore 1t can be tusted on 1ndeest rates.

3. Based on the hyp othesis that 1n geneal agents aye not being infogned by a
web-seryVice by accidens, but aye being infopned as the yesult of a question
being submitted to the web-service, we extend the system with a ®uestion
gemtor An agent can then infer $7ust 1n a web-service, 1n case the web-
service has infopmed the agent 1n accordance with the agent’s curient beliefs.

3 BIT

In this section we repeat and discuss Liau’s logic BIT [2], and we fopnal e the
rinmng example 1n 18. Defimtion 1 p resemss the language of the basic BIT logic,
where B;p 18 read as ‘agent i beheVes ¢’, I;;¢ as ‘agent ¢ ac®uiyes 1nfornation ¢
from agent j’, and T;;¢ as ‘agent 4 §rusts the judgment of agent j on the tputh
of ¢’. In the yest of this paper, we jead I;;¢ as ‘agent ¢ 13 being inforned ¢ by
agent j’ or ‘agent ¢ has been infogned ¢ by agent j'. For the pujp e of this
paper, these three readings can be regajded as synonym ous.

Definition 1 (BIT language). Assume we have n agents and a set Py of
countably many atomic propositions. The well formed formulae of the logic BIT
1s the least set containing @o that is closed under the following formation rules:

— if ¢ is a wff, then so are ~p, By, Lo and Tijp for all1 <i# j <n, and
— if ¢ and Y are wffs, then so is ¢ V .

As usual, other classical boolean connectives are defined as abbreviations.

Defimtion 2 p yesents the axiomatic system for basic BIT. Beliefs ae rep resented
by a nognal KD45 modal g emator; infoin by a noqmal KD modal gperator, and
tust by a non-nognal modal gemator.

2 We do not discuss the state transitions based on communication actions such as
inform and question.

Inferring Trust 147

Definition 2 (BIT). The basic BIT logic contains the following axioms and is
closed under the following set of inference rules:

P propositional tautologies

B1[Bip A Bi(p D ¢)] D Bipp

B2 -B; L

Bf —Bip D Bi=Bip

11 [thp A I”(QD D ’l/))} D) 11]1/1

I2 —I; L

C1 (B,‘Iijgo A TZJQD) D By

c2 T‘UQD > Bsz_](p

R1 (Modus Ponens, MP): from b ¢ and b ¢ D ¢ infer -
R2 (Generalization, Gen): from & ¢ infer - Byp and = I;;¢
R3 from = ¢ = infer = Ty = Ty

Liau discusses seVeal p gssible extersiors of the basic BIT logic: additional axiom
C3 1s called symmetyc tyust, C4 13 called tamsferability, C5 15 called cautious
tyust, and axiom C6 1s called the 1deal enviroriment assump tion.

C3 Tijp O Tij—p (symmetic tyust)
C4 BiTjrp D Tip (¢ rarsfe abihity)
C5Ti;0 D Bi[(1ijo D Bjo) A (Bjo D)] (cauwbrous &ust)

C6 Iijp = Bilijp (1deal envirorment)

To undestand Liau’s logic, fist observe that an agent can trust another agens,
without believing that the otheragent 15 sinceye and comp etent, as 1n otherlogics
of tyuss, see for example [6]. This 15 exp ressed by the central axiom (C1), which
18 weaker than the 1nference from a combination of sincenty I;jo O Bjp and
conpetence Bjp D ¢ by the tusted agent, which aje the jesp ective corstituents
of cautious s pust 1n CH.

Secondly, observe that the logic 18 focussed on the fopmal ation of comse-
quences of t1ust, not on how tyust 1s depved. That 15, axiom C1 chajactey es
how t1ust 1n a p rp os161on may lead to a behef 1n that p rp s1t10n (1n case of
an 1nfopn), but hittle 15 said about the depvation of t1ust. Axion C3 relates
$795% 1n ap rgp S1kion to t st 1n 185 negation, and axiom C4 depVes tust 1n an
agent from tyust 1n another agent. There aje no axioms that depve tyust from
an 1infomm, or that relate $ st 1n a p rgp s1t1on to $ 984 1n anotherp rgp w1t10n,
except for the negation in C3.

Thidly, 18should be obse rVed thait the fact that she ¥ yust @ eat oris non-nommal,
mears that wing axiom C1 we candenVe B from B;1;; (¢ A1) and T ¢, but we
cannot denve B;p from B;I;;¢0 and T;; (¢ A). There are good reas ors forths, for
which we refertoLiaw’spaper. Liaup resents the following standayd semansics for
his logic. We do not mention the semangic corstraints for the additional C3-C6.

148 M. Dastani et al.

Definition 3 (Semantics BIT). A BIT model is a tuple

(W, m, (Bi)i<i<n, (Iij)1<izj<n, (Tij)1<izj<n)

where W is a set of possible worlds, w: &y — 2V is a truth assignment mapping
each atomic proposition to the set of worlds in which it is true, (B;)i<i<n C
W xW are serial, transitive and Fuclidian binary relations on W, (Iz‘j)1gi¢jgn C
W x W are serial binary relations on W, and (T;j)1<i+j<n are binary relations
between W and the power set of W. Moreover, the satisfaction relation is defined
as follows.

Myw = p iff w € n(p)

M, w = —p iff M,w = ¢
M,wlE eV iff Myw =@ or Myw E

M,w = By iff for all u € By(w), M,u = ¢

M,w = Ljp iff for alluw € I;j(w), M,ul=¢

M, w =Ty iff ol ={u € W | M,u = ¢} € Tjj(w),
where || is called the truth set of .

S Grds Lo do =

The corresponding constraints for axioms C1 and C2 are:

m1 For all S € T;;(w), if (B;o1;;)(w) C S, then B;(w) C S, where ‘o’ denotes
the composition operator between two binary operations;

m2 Tij(w) = Nuep, (w) Tij (u)-

The logic may seem jelatively simple, but although Liau does not discuss
such applicatiors we can aljeady use the logic to jeason about relatively com-
plexphenomena such as tyust 1n the 1gnorance of agents T;;(— B¢ A ~Bj—¢) or
same aspects of $pusted thid pamies (B Tine A TiTine) D Tinep.

The following example foymali es some aspects of the fanning example.

Ezample 1. Assume a fimte set of atamic p rgp ss1ors 4(0.0), ..., 4(10.0) denot-
1ng 1nterest javes, and a fimte set of atomic p g w1t1oms €(0.50),. .., e(2.00)
denoting exchange rates, whee the 1nterval and step s1 e aye chen abitanly.
Moreover, let the set of agemts be {i,s1, 52,53} From axion Cl, by conta-
p o1tion we have the following set of 1stances, for s € {s1,s2,83} and r €
{0.50,...,2.00}, which states that if an agent ¢ beheves that a web-service s has
infopned him about an exchange rate which ¢ does not beheve, then agent i will
not t1s% that web-seyvice.

B;I;se(r) A —Bge(r) D —Tise(r)

Moreover, axiom C1 alsomplies the following set of irstances, fors € {s1, $2, 83}
and r € {0.0,...,10.0}, which states that 1f an agent 7 beheves that the web-
service s has infopmed hm about the inteest yates, and ¢ trusts s, then agent ¢
believes the inteyest rates.

Bz’Iisi(T> A rfzs'z('r)) Bii(’r)

Finally, if agent ¢ trusts the web-service s with mespect to some interest or
exchange rates, then 7 also t1usts s with jespect to other rates. This can be

Inferring Trust 149

‘hayd-coded” with the following set of assumpitiors, for s € {s1, s2, 83}, r1,73 €
{i(0.0),...,4(10.0)} and ro,r4 € {(0.50),...,e(2.00)}.

Tisi(r1) V Tise(ra) D Tisi(rs) A Tise(ry)

Hence Liaw’s logic aleady allows to infer new belhefs via tyust, and to infer
distpust. What 18 does not allow 15 t0 1nfer tyust, which 15 what the jest of the
papers about.

4 Topics

For tust 1t mattes what a fopnula “1s aboudf : 16s tpic. Agents have a ceppain
area of expepise or comp etence. If they aje t pastworthy onsome fopmulas, then
they ae likely to be trastworthy on other fopnulas that have the same tpic.
That will lead to ap nncple of 1nference thas, for example, $1ust 1n one financial
rate mphies $1ust 1n another financial yate. We fopmalh e a p pneple of topical
trust. Liau aleady recogm es the need for tgpical tpust, as his thid 1tem for
fugher yeseach:

“A special case of symmetpc trust, called tgpical t1ust, 18 comsidered
without standard axiomat: ation. This p roblem may be remedied by
1t roducing the tpics of p rg 181018 1o the language. For example,
1n a logic of aboutness [7], a sored binayy p redicate A(t,'p’) 11 used to
denote “sentence ‘p’ 18 about tgpic? . If ouy BIT language 15 extended
with such a predicate, then we can fopnulate axioms as: A(t,'¢’) D
T;j when j 18 speciall ed at $gpic ¢, or moge strongly, as (A(t1,'¢’) V
oV A(tg,'9’)) = Tije when the set of tgies at which an agent 18
special ed age [t1,...,tx]. However, futher yeseach 18 needed $osee how
the semantics can be changed to accomm odate this syntactic extersion.

Ourextersion of BIT logic with tpics 8 lowely 1msp1red by ap rgp wal of Her 1g
and Longin. Whereas Her 1g and Longin fopnali e the notion of $gics 1n the
metalanguage, we will fopmali e 1% using standayd noymal modal gperatos.

4.1 Herzig and Longin

The conceptual model of Her 1g and Longin [8] 1 visuah ed 1in Figue 1. Tt
contairs a meta theory with the following thiee jelatiors:

— A competence function that jelates agents to tgics, namely these tgics 1n
which the agent 13 an expen.

— A subject function that relates p r@ d1t1018 t0 tpics, namely thee tpics
that the p rp ®1t1018 are about.

— A scge function that relates actiors (such as infomm) to tgpics. Actiors
which aje affected by the tpic of p rp 18101 are listed here.

150 M. Dastani et al.

Belief

Proposition

subject
competence

scope

Action

Fig. 1. Conceptual Model of Trust

These concep ts enable one to fognulatep pinciples of behef up date. Infopmally,
they can be exp ressed as follows:

— If a fomula ¢ holds, and an agent 15 1nfopmed about a p rgp B1810n Which
does not shaye any tpic with ¢, then ¢ pepists;

— If an agent j 18 competent on a tpic and ¢ belongs to that tgic, then an
infogn by agent j that ¢ mples belef that .

The fist ppancple B not elevams for this paper, because the BIT logic only
corsidess the state of the wodd at one moment. An extersion with time s veyy
1nteesting, but beyond thescge of this paper. Thesecond p panciple mp hies that
if an agent 15 competent on a p rp s1tion ¢ and all tpics of p rp s1k10n Y are
alsotics of ¢, then the agent 13 comp etent on 1, too. It 18 the latterssue which
we fopnali e 1n the BIT logic, smply replacing belief in comp etence by trust.
This m ove dis jegayds the distinction between the two, 1n the serse that behef 1n
soneone’s comnp etencemay lead tot rast, but this need not always be the case and
m ore mmp otantly, $ st can be based on other reas ors than behef 1n comp etence.
Note that both Demolombe and Her 1g and Longin take a syntactic app roach.
Aboutness A(t,'p’) and ‘subject’ are relatiors between fommulas and some set
of objects ti,...,t, called tgics with no additional stpucture. By contast we
handle $@1cs 1n the semantics.

4.2 Simulation

In this section we fopnah e the tpust and tpic gpe@tos, wing a techm®ue
called simulation. This mears that typically conplex @eatos are defined
in tegns of standayd nognalmodal peatos. Forexample, the smulation of the
non-nofnal tust g em@ior in nognal modal logic meays that the tyust gperator
18 defined using nomnal eratol, but that the gemtor uself behaves hike a
non-nopnal gpe@tor.

The advantages of simulation are twofold. Fis%, the advantage of classical
smmulatiors such as the simulation of Vapous kinds of non-nognal m odal logics 1in
[3, 4] 15 that theorem p roves of nommal modal logic can be used forp roving theo-
rems of non-nomnal modal logic. This advantage also holds for the simulation of
the non-nomnal st pemator in nommal moedal logic. This mears, among other
things, that 18 becones easiertohave a theoyem p yover test sp ecificatiors wtten

Inferring Trust 151

1n the extended BIT logic. Second, the ad vantage that m ot1vates the simulation
1n this paper 15 that such a smulation gi1ves us a diject axiomat1 ation of the
logic, which would not be obtained 1if the geratos were only defined semangi-
cally. In that case, additional axioms would have o be given to characten e the
Semantic nos1ois.

Corsider the st gerator, which 18 a non-nognal modal gpemator. This
@ erator can be smulated using thee standayd nopmal modal @eatoss D}j, 02
and O3 [4]

Tijo = O (0% A D)
whe e Op abbreviates ~O-yp as usual.

To undestand the reduction remember that tuth of 7550 1na wodd w of a
model M mears that thee 15 a tuth set (neighborhood) S € T (w) such shat
M,w' |= ¢ forevery w' € S, and M, w"” [~ ¢ forevery w” € S. Thus <>z1j enables
us 1o refer to the existence of a tyuth set (neighborhood), 02 15 wsed %o exp 1658
the tyuth of ¢ 1n S, and O3 exp esses the fakehood of ¢ outside S.

4.3 Topic as Enumeration of Options

Inthis paper, we assume that p rgp 181018 have $pics and that tpics ayeshared
by all agents®. Forexample, thep rp ss1510n4(5.0) has financial infomation as 183
tpic. Moreover, 1n the Her 1g-Longin app roach p rgp os1t10m8 can belong to two
ormore t1cs, though this does not play a role 1n the example. Comse®uently, a
comp hication of the fognali ation of $pics 15 that we not only have tostate which
tpi1cs there are, but that these are all the tgics available. It 15 only by making
explicit all given tics, that we can quantify over t@ics. For this eason, we
1né roduce both an gemator topic and an g erator all_topics. We 1dentify a tpic
with the set of atomic p rgp ss1t1018 that have this t@ic as asubject (see above).
For example, the tgic financial infoymation 1 1dentified with the set

{i(0.0),...,4(10.0),e(0.50), . ..,e(2.00) }
Such a tgic set will be 1ep esented by a fopnula hke
topic(4(0.0) x ... x 4(10.0) x e(0.50) x ... x e(2.00))
1n which ‘X’ 18 used toseparate aliernative gpiioms. Ourencoding 18 as follows.

Definition 4 (Topics). The language of BIT with topics is the language of
BIT, together with clause

— if ¢ is a sentence of BIT, then so are Op, 0%, 03¢ and O*p.
Moreover, we add the following abbreviations:
— 1 X . X o = OO0 A D) AL A O (D30, A DY=p,) A
02((33p1 A O%=p1) V...V (O30, A O%p,,))

3 We assume here that topics are shared by all agents to simplify our presentation.

152 M. Dastani et al.

— topic(p) X ... X pn) = O X ... X ©p)
— alltopics((p1,1 X .. X @1.0);+ 5 (Vb1 X oo X Qpm)) =
O (1,0 X oo X @10) VooV (Qha X oo X Ppm))
— topic_contained(p,) = O (O(O%p A O%=p) D O2(O%) A O)

The tgi1c notation with x may be jead as a rep eSentation of a set. That
15, due to the p rgperies of the modal logic we have for example that p x g x r
mphes ¢ X pXr orp X pxqxr,but 1t does not mply forexample p x q.

The gerator topic 1ep resents the set of p rp d1t10m5 having the same $tic;
all_topicsstates futhe gn ore that these are all t p1cs available, and topic_contained
fognal es the fact that all tgpics of the fist element are alsoa tgic of thesecond
element. In our example topic_contained(i(1.0),e(2.00)) holds. In example 2 an
explanation s given. So topic_contained(y,) exp resses that forevery (O) spic,
if fomula ¢ has that tgpic (O2(03p A O%=y)), then fommula ¢ has that tpic
too. It 15 the latter abbeviation which will be used to fopnulate a tpic-based
$ust 1nference p pneple.

We assume that $p1cs aje treated as axioms, in the serse that they aye known
by all agents, and dist pbute overinfoin and tyust g ematos. We therefore accept
the following p finciples:

topic(p1 X ... X ¢n) = Bjtopic(pr X ... X ¢p)
topic(p1 X ... X ¢y) = I;jjtopic(pr X ... X ¢p)
topic(p1 X ... X pp) = Tj;topic(pr X ... X @g)

The semamntics of BIT with tgics extends the semantics of BIT with four
binayy accessibihity jelatiorns that corresp ond to O to 0%, that ae 1nte p reted
1n the usual way. The distpbution of $gpic gperatos over the BIT modalities 1s
chayactep ed by the fact that 1n each wogdd, the relevant accessibility relations
are the same. Due tospace limitatiors we do not g1ve the details.

It may seem that our encoding of the $gpic permatos 15 ather comphicated,
compared toforexample [7], but the advantage 15 that we have astandad seman-
t1cs. Moreover, an mp orsant ad vantage 1s that we can use the same methodology
for @uestiors too (see section 5).

4.4 Comparison with Janin and Walukiewicz

The encoding of the tgpic germtor s a fuher extersion of the simulation of
non-nommalmodal g ematos mentioned above. This extersion can be undestood
by analogy to work by Jamn and Walukiewic [9]. They define a — S =45
Npes O A D\ cgp, where a 15 an 1ndex of a modal gerator and S 1
set of foynulas [9]. It mears that woldd w satisfies foynula @ — S when any
foqmula of S 18 satisfied by at least one asuccessor of w, and all a-success o8
of w satisfy at least one foypnula of S. Classical modal pe@atos are wptien as
Olp=a— {p, Ttand 0% = a — {p}Va — 0. This 18 essentially the defimiion
of bismulation,® so the 1ep esentation Ieﬂects the essence of modal logic. As

4 This insight is attributed to Alexandru Baltag by Yde Venema.

Inferring Trust 153

we 1ndicated above, we use the x-notation 1stead of sets, so S = {p,q,r}
€p resented by p x g x r. Like sets we have 1teation and associativity, 1.e., we
can depive for example p x ¢ x ¢ x r. HoweVer, also note that if m odalities O¢
and O% are nognal, then we can denve weakeming: (p A ¢) X r — p X r. Since
we do not hike this p rgpety for tpics, we use non-noinal modal gpematos
to be p recise, non-monotonic ones that do not satisfy weakening. So, 1n our
reduction of tgp1cs, we combine two 1deas:

(a) Op = O2(O%p A O*=p) (smulation, as before)

(b)a—S=N\,cs % N0V g ¢ (Jamn and Walukiewic)
These are conbined using the defimtion of m odahity 2 according to (b), substitut-
g (0% ADO% =) for ¢ and substituting ‘2’ for a, which gives us Npes O2(OPpA
O4—p) AO? Voes(@pA 0%=), which coresp onds to the sgpic defimition above.
Since this only defines one s@ic, westill have o 1ep esent that’ thee s atit
for which we use <1,

4.5 Topics and Trust

Now we can fopnal e the intuwition that if ap rgp os1810n 18 tusted, then also all
other p rp s1t1018 are tusted which are based on the same tgics. We call 1%
topic-based trust transfer (T'3).

OH(O2(O%p A O*p)) A topic_contained(ip, ¥) D (T D Tija) (T3)

We foqmah e the punmng example with tgpics. Since thee 13 only one spic,
the example 1 elatively sunple.

Ezample 2. The sic financial infoimation (f) 1 defined as follows.
f=(i(0.0) x ... x(10.0) x e(0.50) x ... x €(2.00)) topic(f) all_topics(f)

In the fist teatment of the example, the $yust 1nference was ‘hayd coded’. Now,
we use axion T3 todenve: Ti5i(r1)VTise(re) D (Tisi(rs)ATise(ry)). Inpaggicular,
from topic(f) we can depve O1(O2(0%(ry) A O*—i(r1))) and from topic(f) and
all_topics(f) we can 1nfer topic_contained(i(r1),i(rs)). Using axiom T3, we can
infer Tisi(r1) D Tisi(rs). Smulady, we caninfer Tjsi(r1) D Tise(rs) and therefore
Tisi(r1) V Tise(re) D Tisi(rs) A Tise(rs). So the p rpery that was p sstulated 1n
Example 1, 15 now depVed from our tgic comstiaction.

Finally, we note that Liau does not discuss the p gssibility to add (Tj5¢ A
T;;v) D Ty (¢V1)), which at fist hand looks reas onable, inpaiculay when ¢ and
1 belong to the same tgi1cs. Such an axign can be fopnah ed with our tgics.
Also, by contap s1s10n we can denVe topic_contained(p, ¥) D (=T, D —T;;).
In other words, 1if all ¥gpics of ¢ are a tpic of ¥, distyust 1n ¥ tramsfes to
dist st 1n .

154 M. Dastani et al.

5 Questions

In this section, the logic of Liau 15 extended with ®uestions, because of their
specific elation to tyust. Questiors have beenstudied extersively as pat of the
semantics of natural language. In this paper we use the semantics of questiors
and amswes of Groenendyk and Stokhof [10]. The 1dea s as follows. Concep-
tually, a €uestion exp esses a ‘gap’ 1n the 1nfommation of the asker, to be filled
by an arswer of the naght type. For example, a ‘when’-®uestion asks for a time
or date. So a Yuestion sp ecifies what 188 p ssible arswe s are. In the semantics,
that mears that a ®uestion sepajates the set of p ssible wodds 1nto disjoint
subsets, each of which cormesp ond to a conplete arswer o the ®uestion. The
s uliing stpuctuge 18 apagision [10]. Techmeally, a patition 15 e®wmvalent $o an
efuivalence relation, called an indistinguishability relation: the agent does not
distingwish between wodds that satisfy the same amswer to a ®uestion. For a
yes /no ¥uestion there are twosets of wopdds 1n the pagition: wodds that cor
sp ond to the arswer “yeé8 | and wogdds that corresp ond to the arswer “no .
For an alte mative ®uestion like “Which color s the tyaffic hght? | the pagtition
corresp onds to thee p ssible arswess: “1ed | “yello¥ and “gieeh . Foran gpen
¥uesiion like “Who are coming tothepady? , which asks about groups of pegple
coming to the paty, we would get p sssible arswe anging from “Nobody will
coneé , “John will come |, “Mayy will con® and “John and Mayy will coneé |,
up to” Everybody will comé . In other words, gpen ®uestiors are treated as
alternative ®uestions, where each selection from a contextually relevant set cor
1esp onds to one alternative.

Like 1n the case of tpics, this conceptuall ation of @uestiors can be en-
coded wsing the symbol ‘X’ to separate alternatives. We dencte a ®uestiion
by an exp ression questionij(apl X ... X n), whee ¢1...0, are the alterna-
t1ve arswes. For example, “Which color 13 the taffic ight? 15 encoded by
question, ; (‘traffic_light_is_red x traffic_light is_yellow X traffic_light_is_green). Note
that yes /no ®uestiors are a special case of alternative Questiors.

In some of the tyust depvation cases, we need to exp ress the fact that a
p ossible amswer was, either exphicitly or mphcitly, asked for. We use the Q-
@ emtor for this. Exp ession @;;¢ mears that agent i has p ssed a question to
agent j for which ¢ 18 a p @sible arswer. In other woids, Q;;¢ holds 1n case
question;; (11 X ... X ¥,) has been exphcitly or mpheisly p sed by agent i o
agent j, foro =1 and 1 <k <n.

Definition 5 (Questions). The language of BIT with topics and questions, is
the language of BIT with topics, together with the following clause:

— if ¢ is a sentence of BIT with topics, then so is O, for 1 <i# j <n.
Moreover, we add the following abbreviations:

— question;; (o1 X ... X ¢,) = Cii(p1 X ... X)

= Qijp = 0O} D A DO y)
The defimtion 13 analogous to the simulation of tgpics by a yange of nopnal
modal gemtos. The semantics of the BIT logic with tgpics and ®uestiors,

Inferring Trust 155

extends the semantics of the BIT logic with tgics, with a smitable accessibility
elation coresp onding to O;;. In the semantics &;; or edwvalently questionij
exp resses the existence of a neighborhood coresp onding to the amswes to a
¥ucsiion from agent i o j. The geratos 2 and O3, 0% ae again wed to
exp 188 the p rgperies of the x-notation for alternatives. Note that like trust,
but unlike tpics, the semantics of ®uestions 15 made relative to agents ¢ and j.
This exp yesses the intwition that tpics are pa of the geneal logical language,
which 1s shajed by all agents, whereas the ®uestions that have been asked aye
paricular forspecfic agents.

In a way, this p rovides only a minmal semantics. It does not exp ress G roe-
nendyk and Stokhof’s 1dea of apartition. In case we want tom odel that amswe s
t0 a fuestion must be exclusive, and that the p ;esented arswes cover the whole
logical space, 1.e., that a question pagitions the logical space, then we add the
following axioms:

(piNg; D L), forall1<i#j<n
(p1V...Vo,=T)

question;; (w1 X ... X ¢n) D
question;; (w1 X ... X @) D

5.1 Questions and Trust

The specific jelation between ®uestiors and tyust that we hike to fopnal e 1n
this section 15 based on the following intwition. If agent ¢ has dehbeately p sed
a %uestion to an agent j $o which agent ¢ already believes the arswer, and agent
j has provided 1nfommation that corresp onds to the 1mtial behefs of agent 7,
then agent ¢ will st the second agent j. Otherwise, if agent j has p rovided
the wrong arswer, 1.e. the infopnation does not corresp ond $0 @’s 1mitial behefs,
then agent ¢ will not $yust agent j. This intwition 15 fopnal ed by the following
axiomns which we call question-based trust derivation and question-based distrust
derivation 1esp ect1Vvely.

(Qije N Bip A Bilijp) D Ty
(Qijo N Bi—~¢ A Bilij0) D Ty

He e, the combination of Q;;¢ and B;l;j¢ 15 meant to exp 1ess that [;;0 18 a
elevant 1esp orse of agent j to a question p #ed by agent ¢. This reading may
be p roblematic for a setting 1n which diffejent ®uestiors can be p sed, with the
same kinds of arswes. For example an arswer “at fivé may be elevant to both
“When does the bus come? and ‘When does the tain come? . However, these
p roblems aje not essential for the phenomenon of inferpng tust.

Using these axioms, we can fognah e our funning example.

Ezample 3. Agent i asks a web-service s the exchange rate: question;,(e(0.50) x
... x €(2.00)) which mphes Q;5¢(0.50) A ... A Q;5€(2.00). If the agent beheves
for examp le that the exchange 5 1, B;e(1), and the web-serVice g1ves the correct
arswer, 1.e., B;I;se(1), then using the ®uestion-based t1ust cieation axiom we
can denve Tjse(1). Smilady, 1n case the agent’s behefs do not corresp ond to the
amswer, for example B;e(5) and theefore B;—e(1l) because exchange yates are
um@ue, we depve —T;5e(1) by @uestion-based distust creation.

156 M. Dastani et al.

5.2 Questions and Topics

Questiors turn out to be veyy smmilay o $gics. In the example, the tpic ‘fi-
nancial infopnasion’ corieSp onds to a combination of the ®uessiors “What 13
the current inteyest rate? and “What 1s the curent exchange rate? . In natu-
al language semantics, jelatiors between tpics and ®Questiors have long been
known. Van Kuppevelt [11] even defines tp1ics 1n temms of the ®uesiiors that
are currently under discussion. By asking a ®uestion, the asker can manmpu-
late the curent tgpic of the convesation. As we noted above, tpics are the
same for all wodds and all agents. By contiast, we can we Q;; to exp ress
the pagticular ‘questiors under discussion’ for agemts ¢ and j. Undersuch an
inte p resation, 18 would make serse that ®uestiors were clged under tpic:
Qi; A topic_contained(p, 1) D Q;;¢. HoweVer, under such an mplcit ‘@ues-
t1or5 under discussion’ 1nte p refation, the ®uestion eator cannot be used to
model that an agent exphcitly asked forsome infopnation. But this 15 exactly
the 1ntep retation we need 1n the punmng example. We theefore use an inter
mediate step, fist using ®uestion-based trust cieation, and then applying the
tgpic-based syust samsferp aneple.

FEzample 4. We would like $0p rove the following.

(Bje(r) A question, (... x e(r) X ...) A Lise(r) A
topic_contained(e(r),i(r")) A Lisi(r')) D Byi(r’)

Swpwe (Be(r) A question (... x e(r) x ...) A ILse(r) A
topic_contained(e(r),i(r')) A ILisi(r')). Fiss, denve Qise(r) by the defin-
tion of Q;j, and subse®uently T;se(r) by the p unciple of ®uession-based tyuss
creaston. Second, denVe Tji(r') from (Tjse(r) A topic_contained(e(r),i(r’)) by
topic-based tyust tramsfer, and thid, denve B;i(r') from (Ii(r') A Tisi(r'))
by Liau’s typust-based belief cieation axion Cl. Fyom these thiee fopnulas the
des1red mp lication can be obtained by p anciples of classical logic.

6 Further Research

6.1 Other Communicative Primitives

Supp ¢se canmumication p pmis1ves proposal;;¢ and request;;p are added %o the
logic, t0 exp ress that agent ¢ rece1ved a p rop osal or re®uest from j. Like an
infomm, an agent will only accept a p r@p wwal when 1t tusts the agent’s capabil-
1516s. And like a @uestion, a je®luest either indicates t1ust in the other agent’s
capabilities, or, analogous to our funning example, a je®uest 15 used to test the
agent’s capabilities. Once accepted, a p rop ssal or e®¥uest exp sses a conmis-
ment of one of the paiicipants to achieve s gne futue state of affais. Therefore
we would have to fugher extend the logic with a ‘see-to1t that’ qemtor E;

[12]. In that case, i’s acceptance of a p rgp al by j can be exp ressed by an 1n-
fomn that 7 $yusts the sender j to achieve the content of the p v wal: ;155 E;¢.

Inferring Trust 157

Smmilady, an acceptance of a e®uest, 15 an infopn that the accep ter will achieve
the comtent of the e®uest: I;F;p. Thus 1n case of a p rgp swal the sender will
act up on accep tance, while 1n case of a e®uest the receiver will act after having
accep ted.

proposal; ;o A 1;;T;j Ejp O Ejp
request; ;o A IjiEip D Eip

6.2 Control Procedures

Trust canbe based onp e onal relatiorships between agents, onp ast exp epgences,
orona eputation that has beenpassed onby othert usted agents. Inthe absence
of such direct $pust 1n the other paiy, an agent has to rely on 1mstitutional
cont rol p rocedues to make sure that other agents will keep theirpant of the
deal. Examples ajye banks to guaantee payment, or a bill of lading to guaantee
shipping. HoweVer, 1f an agent does not undestand a cont rol mechamsm, oy does
not tust the irstitutiorns that guaantee 18, the mechanism 15 useless. Theyefore
one should alsomodel st 1n the cont rol p rocedures. The general 1dea can be
sunmag ed as follows [1].

Trarmsaction Trust = Pay Trust + Control Trust

If we futheranaly e conrol $ust, 1t comes down to two aspects. Fist, the agent
must undestand the workings of the control mechansm. For example, agent
1 undeptands that, within a shppment 1stitution s, a bill of lading ‘counts
as’ evidence of the goods having been shipped. A bill of lading 1 a specific
kind of infopn act. In BIT we wnte I;sbill D I;sshipped. Second, the agent
must tyust the imstitution s that guajantees the cont rol mechamsm. This can be
exp ressed 1n BIT to0: T;sshipped. Together, these pules mp licate, that whenever
the agent receives a bill of lading, 1t will t pust that the goods have beenshipp ed:
I;,bill D B;shipped. This tjarslation s p ronsing, but jathe rsimp hified. Fugher
relatiorns between Liau’s BIT logic and evidential nogms need to be investigated.

7 Related Research

The notion of $ust has been studied extersively 1n the social sciences. For an
overview of reseaich on tyust 1n the context of elect ronic conmece and multi-
agent systems, see Tan and Thoen [1, 13]. Genejally, tyust 15 studied 1n jelation
t0 a tamsaction. Mayer et al. g1ve the following defimntion of tyust: “The will-
ingness of a pay to be vulnemable to the actiors of another pay based on
the exp ectation that the otherpaty will pefoun apagicular action mp otant
to0 the tustor, 1respective of the ability o momtor or control that otherparty
[14] . Note that psk 15 involved for the tyuster. A smilay sentment 5 found
1n the defimtion by Gambetta “Tyust 15 the subjective p robability by which an
individual A exp ects that anotherindividual B pefomms a given action on which
1is welfare dependd [15]. Both these defimtiors 1ndicate that tyust s subjective,

158 M. Dastani et al.

and dijected towads anotheragent. Tyust Ieﬂects anintepesonal elation, that
canbe generali ed tomachines. This aspect 15 mcely Ieﬂected in the logic of Liau.

Aboutness and tpicality have jece1ved a lot of attention 1n hinguistics. A §gpic
and 185 subtgics can be used to 1dentify the stpucture of a text. For example,
Gy and Sidner[16] relate the ¥pic of a discousse (also called center or focus of
attention) to the intention that 15 1ntended $o0 be conveyed by the author. Moge
technical yeseach on aboutness 13 done 1n the context of infopnation retpeval
[17]. Cleady, 1n infoimation retpeval 18 mattes under what circumstances we
cansay that two documents are “about the same t1¢ .

A notion that 15 Very smilay to $pust 15 found 1n the so called BAN logics
[18], used %o define authenticationp olicies 1n comp usersecupty. Although there
15 no exp licit notion of $ st 1n these logics, shajing asecyet key counts as ap roof
of being tyusted. The p pmitives of BAN logic aye as follows: i sees X, which
mears that agent ¢ received a message comtaining X. This 15 similay to Liau’s
infoin; j said X, which mears that agent j actually sent a message containing
X, and that 1n case j 15 to be tpusted, X ought to be beheved by ¢; ¢ controls X,
which can be 1ntep reted as saying that agent i 15 tyusted as an authopty on X.
This notion might be develgped towaids our use of tgics. In BAN logics 1t 18
often wsed to rep reSent trusted thiyd paies, ike authentication services; fresh

X, which mears that X has not beensent p reviously, and ¢ &, 7, which mears
that agent ¢ and j ae entitled to use the same seciet key K. Shapung a key
counts as a p roof of being tyusted. There are several diffeiences between BAN
logics and Liaw’s BIT logic and the way they ae used. An obvious diffejence
18 the use of keys, which 15 absent from Liau. Ancther difference concerrs the
pewspeciive: Liau’s logic takes the viewp oint of an individual agent: under what
circumstances can I behieve the content of a message? BAN takes the biyd’s eye
view of a designer: how should I designmy p rotocol t0 avad seciets getting 1st?
The undedying logic s also diffeens.

Finally, trust has been studied extersively in the context of a ‘Gnd’-like
architecture for the shapng of yesouces and services [19]. Much of this work 1
app hed. HoweVer, the unde dying formalm odels that ae develg ed 1n the context
of such research [20] deserVe to be compared with the BIT logic p rgp ssed here.
Other fogmal atioms 1n temms of modal logic also exist [21].

8 Conclusion

Trustplays an mp ofant role 1n advanced comp utersystems such as tpust man-
agement Systems 1n comp usersecupty [22] and rep utation systems as used for
example 1n eBay [23]. These apphcatiors define a much moe p yecise novion of
t1ust than the notion of st used 1nsocial theopies. Moreover, intelligent agents
use tust mechansms to jeason abous other agents, for example 1n coq eation,
coordination, or elect ronic conmejce. Agents that jeason about theiy jelatiors
with other agents, such as agents reasoning about p ssible cog eation st ate-
g1es, can benefit fron jeasomng about tyust explicitly. Liau’s logic does not tell
us much about the 1nnerstpaciure of tust, which may even be corsidered as a

Inferring Trust 159

black box, but 1t does explain the jelation between $yust and other concepts, 1n
paricular the relation between tust, belief and infopmation actiors.

This paper p ieSents two extersiors to Liaw’s BIT logic, which allow the
denVation of tyust. Fist, we extend the logic with tgpics. In this way, we can
exp ress that from $1ust 1n the tpath of one p rgp B1810n, we can infer $ust 1n the
trath of otherp rop os1t1015 that are related by tpic.

Second, we extend the logic with @uestiors. In this way, we can exp ress that
infomms aje explicitly asked for, or else aje mphcitly comsidesed elevant by an
agent. There aye two kinds of tust inference p pnciples. We might say that by
selecting another agent to ask a ®uestion, you indicate that you will tust this
other agent. Thus, ®uestiors mply tust. On the other hand, Questiors may be
asked stiategically. In our rfanmng example the agent delibepately asked for a
uestion with a known amswer, 1n order to infer if the jeplying agent could be
trusted onp rg sitioms of a related tpic.

A ®uestion concerrs the app hicabilhity of t ust p ancip les. We have alyeady seen
two alternative p inciples regarding t rast and Questiors. It als oseems jeas onable
t0 restyct the t yust depvation axiom tosituatiors 1n which the agent 15 relatively
1ignorant. Inanexam situation, the teache rknows the arswe 8 toall the questiors he
asks. But a correct ars wertothe #,8% question will not necessaaly make the teachey
1 st the student about the arswes to the remaining 9uestiors. This just shows
that thes ocial context 1n which t pust 1s app hied, needs tobem odeled Very carefully.

There are several mp ofant p rperdies of trast which yemain undiscussed.
The logic does not captuye the element of psk. In the fuinmng example, §usting
the web-seyvice 18 psky, because the p optfoliomanagement of the agent dep ends
on 15. Note that without such a psk, the agent would not go through the trouble
of testing the services with the @uestion about exchange rates.

‘We bﬂeﬂy indicated how the logic might be fuiher extended with je®uests
and p rp owals. This however, would je®uire a shift from an epistemic notion of
tyust, about beliefs, 10 a mose p ractical notion of $ust, abouts actiors. We also
discussed how the logic 15 jelated to more general tyamsaction models of $yust,
which 1nvolve control mechamsms guajyanteed by an 1mstisution. Moe reseaich
13 needed to connect these models with work on 1m8$818ut10nal noms.

References

[1] Tan, Y.H., Thoen, W.: Formal aspects of a generic model of trust for elec-
tronic commerce. In: 33rd Hawaii International Conference on System Sciences
(HICSS’00). (2000) p. 6006

[2] Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems — a
modal formulation. Artificial Intelligence 149 (2003) 31-60

[3] Gasquet, O., Herzig, A.: From classical to normal modal logics. In Wansing, H.,
ed.: Proof Theory of Modal Logics. Volume 2 of Applied Logic Series. Kluwer
(1996) 293-311

[4] Kracht, M., Wolter, F.: Normal monomodal logics can simulate all others. Journal
of Symbolic Logic 64 (1999) 99-138

[6] Goffman, E.: Strategic interaction. University of Pennsylvania Press, Pennsylvania
(1969)

160

[6]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]
18]

[19]

[20]

21]

[22]

23]

M. Dastani et al.

Demolombe, R.: To trust information sources: a proposal for a modal logical
framework. In Castelfranchi, C., Tan, Y.H., eds.: Trust and Deception in Virtual
Societies. Kluwer (2001) 111-124

Demolombe, R., Jones, A.: On sentences of the kind “sentence ‘p’ is about topic
t”. In: Logic, language and reasoning: Essays in Honour of Dov Gabbay. Kluwer
Academic, Dordrecht (1999) 115-133

Herzig, A., Longin, D.: Belief dynamics in cooperative dialogues. Journal of
Semantics 17 (2000) 91-118

Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related
results. In: Proceedings of the 20th International Symposium on Mathematical
Foundations of Computer Science (MFCS’95). LNCS 969, Springer Verlag (1995)
552-562

Groenendijk, J., Stokhof, M.: Questions. In Van Benthem, J., Ter Meulen, A.,
eds.: Handbook of Logic and Language. North-Holland, Elsevier (1996) 1055-1124
van Kuppevelt, J.: Discourse structure, topicality and questioning. Journal of
Linguistics 31 (1995) 109-149

Horty, J.: Agency and Deontic Logic. Oxford University Press (2001)

Tan, Y.H., Thoen, W.: An outline of a trust model for electronic commerce.
Applied Artificial Intelligence 14 (2000) 849-862

Mayer, R., Davis, J., Schoorman, F.: An integrative model of organizational trust.
Academy of Management Review 20 (1995) 709-734

Gambetta, D.: Can we trust trust? In: Trust. Basil Blackwell, New York (1988)
213-237

Grosz, B., Sidner, C.: Attentions, intentions and the structure of discourse. Com-
putational Linguistics 12 (1986) 175-204

Huibers, T.: An Axiomatic Theory for Information Retrieval. PhD thesis, Utrecht
University (1996)

Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer Systems 8 (1990) 18-36

Foster, 1., Kesselman, C., Tuecke, S.: The anatomy of the Grid: Enabling scalable
virtual organizations. .International Journal of High Performance Computing
Applications 15 (2001) 200222

Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic net-
works. In: International Conference on Software Engineering and Formal Methods
(SEFM’03), IEEE (2003) 54-63

Jones, A., Firozabadi, B.S.: On the characterisation of a trusting agent - aspects
of a formal approach. In Castelfranchi, C., Tan, Y., eds.: Trust and Deception in
Virtual Societies. Kluwer Academic Publishers (2001) 157-168

Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE
Symposium on Security and Privacy. IEEE (1996) 164-173

Dellarocas, C.: The digitization of word-of-mouth: Promise and challenges of
online feedback mechanisms. Management Science 49 (2004) 1407-1424

Coordination Between Logical Agents

Chiak: Sakama' and Katsumi Inoue?

! Department of Computer and Communication Sciences,
Wakayama University,
Sakaedani, Wakayama 640 8510, Japan
sakama@sys.wakayama-u.ac. jp
2 National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101 8430, Japan
ki@nii.ac.jp

Abstract. In this paper we suppose an agent that has a knowledge
base written in logic programming and sets of beliefs under the answer
set semantics. We then consider the following two problems: given two
logic programs P; and P», which have the sets of answer sets AS(Pr)
and AS(P-), respectively; (i) find a program @ which has the set of
answer sets such that AS(Q) = AS(P1) UAS(P,); (ii) find a program R
which has the set of answer sets such that AS(R) = AS(Py) N AS(P).
A program @ satisfying the condition (i) is called generous coordination
of P; and P»; and R satisfying (ii) is called rigorous coordination of Pi
and P». Generous coordination retains all of the original belief sets of
each agent, but admits the introduction of additional belief sets of the
other agent. By contrast, rigorous coordination forces each agent to give
up some belief sets, but the result remains within the original belief sets
for each agent. We provide methods for constructing these two types of
coordination and discuss their properties.

1 Introduction

In mulii-agent systems diffeent agents may have diffejent sets of behefs, and
agents negotiate and accomm odate themselves to reach acceptable agreements.
We call a p rocess of forming such agreements between agents coordination. The
p roblem 18 how to settle an agreement acceptable to each agent. The outcome
of coordination 13 ye®uired to be corsistent and 15 desiyable to yetain onginal
infomation of each agent as much as p ssible.

Supp e an agent that has a knowledge base as a logic p rogram whase se-
mantics 18 given as the collection of answer sets [7]. Amswersets 1ep jesent sets
of hiterals corresp onding $o behefs which can be bult by a jational easoner on
the basis of a program [2]. An agent may have (conﬂlctlng) alternative sets of
beliefs, which ae 1ep yesented by muliple amswer sets of a p rogram. Different
agents have different collectiors of arswersets 1n geneyal. We then capiue co-
ordination between two agents as the p roblem of finding a new p rogram which
has the meamng balanced between twop rograms. Corsider, for 1mstance, a logic

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 161-177, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

162 C. Sakama and K. Inoue

program P; which has two amswersets S; and Ss; and another logic p rogram
P, which has two amswersets So and S3. Then, we want to find a new p rogam
which 13 a result of coordination between P; and Ps. In this paper, we corsider
two diffejent solutiors: one 15 ap rogram @ which has thiee arswersets Sy, Sa,
and Ss; the others aprogram R which has the single amswerset Ss.

These two solutiors p rovide different types of coordination the fist one
etairs all of the opginal belief sets of each agent, but admits the 1nt roduction
of additional belief sets of the other agent. By contast, the second one forces
each agent to give up some belief sets, but the jesult jemairs within the onginal
belef sets for each agent. These two types of coordination occurin real hife. For
1stance, supp ose the following scenapo: o decide the Academy Award of Best
Pictuyes, each membey of the Academy nominates films. Now there ae thyee
membe s p1, p2, and p3, and each member can nominate at m @t two films:
p1 noninates fi and fo, po nominates fo and f3, and p3 nominates fo. At this
momens, thyee nominees fi, fo, and f3 are fixed. The situation 15 rep resented
by thee p rograms:

Py fi; fo e,
Py fo; f3
PS: f2<_7

where 5 1ep resents disjunciion. Heye, Py has swoamswersets: {f1} and {f2}; P»
has two amswersets: {fo} and {f3}; Ps has thesingle arswerset: {fo}. The thee
noninees coresp ond to the arswersets: {f1}, {f2}, and {f5}. Ap rogram having
these thiee arswersets 15 the fist type of coordination. After final Voting, the
film f5 15 supp orted by thiee membes and becones the winner of the Awad.
That 15, the winner 15 1ep 1esented by the arswerset {f2}. A program having
this single arswerset 15 the second type of coordination. Thus, these two types
of coordination happen 1n different situatiors, and 18 13 meamngful to develgp
comp wtational logic for these coordination between agents.

The p roblem 18 then how to build ap rogyam which reali es such coordination.
Fomally, the p roblems comsidered 1n this paper are descabed as follows.

Given: twop rograms P; and Ps;
Find: (1) aprogram @ satsfying AS(Q) = AS(P1) U AS(Py);
(2) aprogram R satsfying AS(R) = AS(P1) N AS(P,),

where AS(P) rep esents the set of arswersets of ap rogram P. The p rogram Q
satisfying (1) 1 called generous coordination of Py and Ps; and the p rogram R
satisfying (2) 1 called rigorous coordination of P; and Py. We develgp methods
for comp uting these two types of coordination and Venfy the jesulss.

The est of this paper s ogam ed as follows. Section 2 p esents defimsiors
and tegninologies used 1n this paper. Section 3 1ntroduces a framework of co-
ordination between logic p rograms. Section 4 p rovides methods for comp uting
coordination and addyesses their p rperties. Section 5 discusses related 1ssues
and Section 6 summap es thepaper.

Coordination Between Logical Agents 163

2 Preliminaries

In this paper, we supp e an agent that has a knowledge base wtten 1n logic
programming. An agent 13 then identified with 185 logic p rogram and we use
thee tepns 1nte changeably throughout the paper.

A program corsidered inthis papers an extended disjunctive program (EDP)
which 15 aset of rules of the fom:

Ly;--3 Ly « Liyq,..., Ly, notLyyg1,...,n0tL, (n>m>12>0)

wheye each L; 15 ap ss181ve/ negative hiteral, 1.e., A or 7 A foran atom A, and not
18 negation as failure (NAF). not L 1 called an NAF-literal. The symbol % yep-
resents disjunction. The left-hand side of the yule 1s the head, and the pght-hand
side 15 the body. Foreach yule r of the above foun, head(r), body™ (r), body~ (r),
and not_body~ (r) denote thesess of (NAF-)teyals {L1,..., Li}, {Li41,. -, Lim},
{Lm+1,---,Ln}, and {not Ly, 41,...,n0t L, }, wespectively. A disjuncéion of hit-
eyals and a conjunction of (NAF-)hteals 1n a yule are identified with 185 corre-
sp onding sets of (NAF-)htejals. A pule 7 18 often watten as head(r) « body™ (1),
not_body ™ (r) or head(r) + body(r) where body(r) = body™(r) U not_body™ ().
A pae r s disjunctive 1if head(r) contairs more than one hiteral. A pale 7 15 an
integrity constraint if head(r) = (§; and v 18 a fact if body(r) = 0. A p rogram P
18 NAF-free if body™(r) = 0 forany rale r in P. A p rogram with vapables 1s se-
mantically 1densified with 15 ground 1rstantiation, and we handle p rg s1t10nal
and ground p rograms throughout the paper.

The semantics of EDPs 15 given by the answer set semantics [7]. Let Lit be
theset of all ground hiteals 1n the language of ap rogram. A set S(C Lit) satisfies
a ground pule 7 1f body™* (r) € S and body~ (r) NS = @ mply head(r) NS # 0. In
pagicular, S satisfies a ground 1nseguty corstyint r with head(r) = 0 1f ershey
body™(r) € S orbody=(r)NS # 0. S satsfies a ground p rogram P 1f S satisfies
eveyy pule 1n P. When body™(r) € S (1esp. head(r) NS # 0), 1t 15 also wakten
as S = body™(r) (wesp. S | head(r)).

Let P be an NAF-fiee EDP. Then, a set S(C Lit) 15 a (consistent) answer
set of P1f S 18 amimmal set such that

1. S satsfies eveyy pule from the ground 1mstantiation of P,
2. S does not containapairof complementayy hiteals L and =L forany L € Lit.

Next, let P be any EDP and S C Lit. Foreveyy yule r 1n the ground 1rstantiation
of P, she pale 7° : head(r) « body™ (r) 18 included 1n the reduct P 1f body~(r)N
S = (. Then, S 15 an answer set of P 1f S 18 an arswerset of P°. An EDP has
none, one, or muliple arswersets 1n general. The set of all arswersets of P 1s
wotten as AS(P). A program P 15 consistent 1f 18 has a corsistent amswer ses.
In this paper, we assume that a p rogram 15 corsistent unless stated otheywise.
A Iiteral L s a comse®uence of credulous reasoning inap rogram P (wptten as
L € erd(P)) if L s included 1nsome arswerset of P. A hiteral L 1s a corsefuence
of skeptical reasoning in ap rogram P (wnttenas L € skp(P)) if L 18 included 1n
every arswerset of P. Cleady, skp(P) C erd(P) holds forany P. Twop rogams

164 C. Sakama and K. Inoue

Py and P, are said to be AS-combinable 1if eveyy set in AS(Py) U AS(Ps) 18
minmal underset 1nclusion.

Example 2.1. G1Ven §Wo p rog rams:

Pr:opige,
P q,
q <D,
P, : p+notq,

q < notp,

whee AS(P1) = {{p,q}} and AS(P2) = {{p}, {q}}. Then, crd(P;) = skp(P) =
{p,q}; crd(Py) = {p,q} and skp(P;) = 0. P, and P, are not AS-conbinable
because the set {p,q} 15 not mimmal 1n AS(P;) U AS(P,).

Techmically, when two p rograms P; and P are nos AS-conbinable, we can
make them AS—coYIlblnalﬂe by 1né roducing the yule L < not L foreveyy L € Lit
to each p rogram, wheye L 18 a newly 1nt roduced atom ass ociated um®uely with
each L.

Ezample 2.2. In the above example, put P/ = P, U Q and P, = P, U Q with

Q: P« notp,
q < motq.

Then, AS(P]) = {{p,q}} and AS(P}) = {{p,q},{P,q}}, 50 P and Py are AS-
combinable.

3 Coordination Between Programs

Given two p rograms, coordination p rovides a p rogram which 15 a jeasonable
comp ronise between agents. In this section, we 1nt roduce two different types of
coordination under the arswerset semantics.

Definition 3.1. Let P; and P, be twop rograms. A p rogram @ satisfying the
condition AS(Q) = AS(P1) U AS(P,) 15 called generous coordination of P1 and
Py; aprogram R satisfying the condition AS(R) = AS(P1) N AS(P;) 15 called
rigorous coordination of Py and Ps.

Generous coordination retairs all of the arswersets of each agent, but ad-
mits the 1nt roduction of additional arswersets of the other agent. By cont ast,
ngorows coordination forces each agent to give up some amswer sets, but the
esult yemairs within the opginal arswersets for each agent.

Techmically, generous coordination e®uiyes twop rograms P} and P, tobe AS-
combinable, since arswersets of @ are allmimmal. Thus, when we corsider gen-
erous coordination between swop rog rams, we assume them tobe AS-combinable.

Coordination Between Logical Agents 165

Generous coordination betweenp rograms that are not AS-combinable 18 p gsible
by making them AS-combinable 1n advance using the p rogram tamsfommation
p esented 1n Section 2.

Definition 3.2. For two programs P; and Ps, let @ be a result of generous
coordination, and R a result of ggorous coordination. Wesay that generous (resp.
fgorous) coordination succeeds if AS(Q) # 0 (resp. AS(R) # 0); otheywise, 1t
fails.

Generous coordination always succeeds whenever both Py and P, are corsis-
tent. On the othey hand, when AS(P;)NAS(P,) = 0, pagorous coordinasion fails
as two agents have no comm on belief sets. Note that generous coordination may
p roduce a collection of arswersets which contradict with one another. But this
does not cause any p roblem as a collection of arswersets ep resents (conﬂlctmg)
alternat1ve belief sets of each agens.

As we assume corsistent p rogiams, the next yesult holds by the defintion.

Proposition 3.1 When generous/rigorous coordination of two programs suc-
ceeds, the result of coordination is consistent.

Coordination changes the comsefluences of ciedulous /skeptical reasomng by
each agent.

Proposition 3.2 Let Py and P> be two programs.

1. If Q is a result of generous coordination,
(a) crd(Q) = crd(Py) U crd(Ps) ;
(b) skp(Q) = skp(P1) N skp(Ps) ;
(c) crd(Q) 2 cerd(P;) for i=1,2;
(d) skp(Q) C skp(F;) for i=1,2.
2. If R is a result of rigorous coordination,
(a) crd(R) C erd(Py) U crd(Pz) ;
(b) skp(R) 2 skp(P1) U skp(P,) if AS(R) #0;
(c) crd(R) C crd(P;) for i=1,2;
(d) skp(R) 2 skp(P;) for i=1,2 if AS(R) # 0.

Proof. 1.(a) A hieyal L 18 included 1n an amswerses in AS(Py) U AS(P) f L
18 1ncluded 1n an arswerset 1n AS(Py) or included 1n an arswerset in AS(P,).
(b) L 1 included 1n every arswerses in AS(Pr) U AS(P,) ff L 15 1included 1n
every arswerset 1n AS(P;) and also included 1n eveyy arswerset in AS(P2).
The results of (¢) and (d) hold by (a) and (b), respectively.

2.(a) If L 18 included 1n an arswerset 1n AS(P1)NAS(P2), L s 1ncluded 1nan
amswerset 1n AS(P;) (1 = 1,2). (b) If L 18 included 1n eveyy arswerset of erther
Py or P2, L s included 1n every arswerset in AS(P1)NAS(P,) 1if the intesection
15 nonempty. The yesulis of (¢) and (d) hold by (a) and (b), 1espectively. O

166 C. Sakama and K. Inoue

Ezample 3.1. Let AS(Py) = {{a,b,c},{b,c,d}} and AS(P2) = {{b,c,d}, {c,e}},
whee crd(Py) = {a,b,c,d}, skp(Py) = {b,c}, erd(P2) = {b,c,d,e}, and
skp(Py) = {c}. Generous coordination @ of P, and P, has the amswer sets
AS(Q) = {{a,b,c}, {b,c,d}, {c,e}} whee crd(Q) = {a,b,c,d,e} and skp(Q) =
{c}. Rigorows coordination R has the amswersets AS(R) = {{b,c,d}} whee
crd(R) = skp(R) = {b,c,d}. The above relatiors ae Venfied for these sets.

Generous cooydination meyges credulous corsefuences of P, and P», while
restcts skeptical comse®uences 1o these that ae common between two p ro-
grams. As a result, 1t 1ncreases credulous comse®uences and deceases skeptical
comse®uences. This jetects the situation that accepting gimors of the other
agent 1ncreases alternative choices while weakemng the opginal agument of
each agent. By cont1ast, ngorous coordination reduces credulous comse®uences,
but 1ncreases skepiical comse®uences in general. This Ieﬂects the situation that
excluding gpintors of the otheragent cats abandoning some of one’s alternative
beliefs, which jesults 1nstengthening some opginal aygument of each agent.

Definition 3.3. For two programs P; and Ps, let @ be a jesult of generous
coordination, and R a resulé of pgorous coordinasion. When AS(Q) = AS(P)
(resp. AS(R) = AS(Py)), Py dominates Py under generous (165p. 1goroys) co-
ordination.

Proposition 3.3 Let P; and Py be two programs. When AS(P1) C AS(Py), P»
dominates Py under generous coordination, and P, dominates Py under rigorous
coordination.

When P, domninates P; under generous coordination, we can easily have a
esulé of generous coordination as Q = P,. Smilafdy, when P, dominates Ps
under pgorods coordination, a yesult of pgorous coordination becomes R = Pj.

In cases wheye one agent doninates the other one, or when coordination fails,
the jesults of coordination are tpvial and umnteresting. Then, the p roblem of
1nteest 18 the cases whee AS(P) € AS(P;) and AS(P;) € AS(Pr) for com-
puting generous / ngorous coordination; and AS(P)NAS(P,) # 0 for comp using
ngorovs coordination. In the next section, we p resent methods for computing
these two coordination.

4 Computing Coordination

4.1 Computing Generous Coordination

We fist pesent a method of conputing generous coordination between two
P rograms.

Definition 4.1. Given twop rograms P; and Ps,

P, @ P, = { head(r1) ; head(ra) < body.(r1), body.(ra) | r1 € P, r2 € P2 },

Coordination Between Logical Agents 167

wheye head(r1); head(re) 13 the disjunction of head(r;) and head(rs),
body.(r1) = body(r1) \{not L | L € T\ S} and body.(r2) = body(r2) \ {not L |
LeS\T} forany S € AS(Py) and T € AS(P).

Thep rogram P; @ P» 15 a collection of yules which aye obtained by combining
a pule of P; and a yule of Py 1nevery p ssible way. In body, (r1) every NAF-liteal
not L such that L € T\ S 15 drpped because the existence of this may p jevent
the denvasion of some liteyal 1n head(r2) afier conbination.

FEzample 4.1. Corsider $wo p rogams:

P : p+—notq,
q < notp,

Py : —p<— notp,
wheye AS(P1) = {{p}, {q}} and AS(P>) = {{—p}}. Then, P, & P> becones

p; Tp < notg,
q; —p < notp.

Note that notp from the pule of P, 138 drgpped 1n the resulting yules because of
the existence of {p} 1n AS(Py).

By the defimtion, Py @ Ps 15 comp uted 1ntme | Py | x| P X |AS(Py)| x| AS(P2)],
where | P| 1ep resents the number of yules in P and | AS(P)| 1ep esents the number
of arswersets 1n P.

The p rogram P; @ P, generally contairs useless or redundant liveals / pules,
and the following p rogram tamsfommatiors are helpful 4o smmphfy the p rogram.

— (elmination of tautologies: TAUT)
Delete a pule r from ap rogram 1if head(r) N body™ (r) # 0.
— (elmination of contadictiors: CONTRA)
Delete a yule 7 from ap rogram 1f body™ (r) N body ™~ (r) # (.
— (elminasion of nonmimmal yules: NONMIN)
Delete a yule r fyomn ap rogyam 1if theye 15 another yule ' 1n the p yogam such
that head(r') C head(r), body™ (r') C body™ (r) and body™ (') C body™ (r).
— (mejging duphicated hiverals: DUPL)
A disjunction (L; L) appeanng 1n head(r) s meged into L, and a conjunc-
t1on (L, L) or (not L, not L) app eanng 1n body(r) 15 meyged into L oy not L,
16Sp ect1Vvely.

These p rogram tamsfommations all p eserve the amswersets of an EDP [3].
Ezample 4.2. Given $wo p rogams:
P pe—g,
T <—
Py : p<« notg,

q<—T,

168 C. Sakama and K. Inoue
P1 [S2) Pg becones

D; D« g, notg,
p;4q—4gq,T,
p;r <« notq,

QT

The fist pale 15 deleted by CONTRA, the second pale and the fouigh pule ae
deleted by TAUT. Aftersuch elimination, the resulting p rogram contairs the
thiyd pule only.

Now we show that P @ P, real es geneyous coordinasion of P; and Ps.

Lemma 4.1 Let Py and P be two NAF-free AS-combinable programs. Then, S
is an answer set of Py ® Py iff S is an answer set of either Py or Ps.

Proof. Supp e that S 15 an amswer set of P;. Then, S satisfies any rule
head(ry) < body(ri) in Py, thewgby satisfies any rule head(r1); head(ry) «
body(ri),body(re) 1n Py @ Pe. (Note: body.(r;) = body(r;) for NAF-fiee p ro-
grams.) Tosee that S 15 anamswerset of P; @ Py, supp e that there 15 aminmal
set T C S which satisfies every pale in Py @ P,. Since S 18 an arswerset of P,
there s a yule r} 1n Py which 18 not satisfied by T. Forthis pule, T = head(r]) and
T k= body(r}) hold. Then, for any rule head(r}]); head(rs) < body(r}), body(rs)
in Py @ Py, T = head(rs) or T = body(rs). Since every yule in Ps 15 combined
with 77, 1t holds that T' |= head(rs) or T [~ body(ra) forevery ro 1n P. Then, T
satisfies P,. As Py 15 corsistent, 1t has an amswerset T C T. This contyadicts
the assumption that P; and P> are AS-combinable, 1.e., 7" ¢ S. Hence, S 15 an
arswerset of P @ P5. The case that S 15 an amswerset of P; 18 p roved 1n the
Same manner.

Convesely, supp e that S 15 an arswer set of P, & P>. Then, S satis-
fies any yule head(r1); head(ry) «— body(ri),body(re) in Py & Pa. Then S
body(r1),body(rs) mphes S = head(r1); head(rs). If S = head(r1) forsome yule
r1 € P1, S = head(rs) forany ro € Py. Then, S = body(r2) mphes S = head(rs)
for any 7o € P, so that S satisfies every pule in Po. Else 1if S [~ head(ra) for
sone pule 7o € Po, S | head(ry) for any r1 € P;. Then, S | body(r;) m-
phes S |= head(r1) for any r1 € Pi, so that S satisfies eveyy pule in Py. Eke 1f
S E head(r1) foreveyy r1 € P; and S |= head(ry) foreveyy ro € Py, S satisfies
both P; and P». Thus, 1n eveyy case S satisfies erther Py or P». Supp e that S
satisfies P; but 18 18 not an arswerset of P;. Then, thee 18 an arswerset T of
Py such that T C S. By the ifpani, T becomnes an arswerset of P & P,. This
contradicts the assump tion that S 15 an amswerset of P & P,. Smilar agument
18 app lied when S satisfies Ps. O

Theorem 4.2. Let P, and Py be two AS-combinable programs. Then, AS(P; @
Py) = AS(P) UAS(P,).

Coordination Between Logical Agents 169

Proof. Swpp e S € AS(P;). Then, S 18 an arswerset of PP, so that S 18 an
amswerset of PGPy forany T € AS(P;) (Lemma 4.1). (Note: as Py and P are
AS-canbinable, the reducts Py and P aje also AS-combinable.) For any rule
head(r1); head(ra) « body™ (r1), body™ (r2) 1n PP ® PL | 18 holds shat body ™ (r1)N
S = body~(re) NT = 0. On the other hand, for any yule head(ry); head(ry) «—
body.(r1), body.(r2) 1n Py & Ps, head(ry); head(rs) < body™ (1), body™ (r2) 1 1n
(P, @ P)S off (body=(r))\{L | LT\ S} NS =0and (body(ro) \ {L |
LeS'\T}H)NS=0"forany S’ € AS(P1) and T € AS(P,). Heqe 1t holds that
(body=(r1)\{L | LeT\S })NS Cbody (r1)NS and (body— (ra) \{L | L €
S'\T }NS C body~ (r2)NTNS C body (ro) NT. Hence, P @ P C (P& P,)5.
Supp e any rule head(ry); head(ry) < body™(r1),body™ (r2) 1n (Py @ Py)° \
(PP @ Pf). Since S satisfies any pule 71 1n Py, S |= body™ (r1), body™ (ry) mp hes
S k= head(ry); head(rs). Thus, the arswerset S of PP @ PJ satsfies every yule
i (PL@P)%\ (PP @ PY). By PP @ P{ C (P1® P,)®, S becomes an arswerset
of (P ® P,)% and S € AS(P, ® P,). The case of S € AS(P,) 18 p roved 1n the
same manner.
Convesely, supp e S € AS(P; @ P). Then, S satisfies any yule

head(ry); head(rs) < body.(r1), body.(rz2) in PL®Ps,s0 S = body. (1), body.(r2)
mphes S = head(ri); head(re). If S = head(r1) forsome pale r; € Py, S |=
head(rs) for any ro € Py. Then, S = body.(re) mphes S |= head(rz) for any
ro € P2, 508 = head(ra) or S [E body.(ra). As S F body.(re) mphes S [~
body(rz), 1t holds that S |= head(rz) or S [~ body(re) for any ro € P. Hence, S
satisfies every pule 1n Po. Else if S £ head(rs) forsane yule ro € Po, 1t 18 shown
1n a smilay manner that S satisfies every pule in Pj. Eke 1if S = head(ry) for
every 1 € Py and S | head(rs) for every ro € Py, S satisfies both Py and Ps.
Thus, 1n eveyy case S satisfies erther Py or P. Supp ose that S satisfies P but
1% 15 not an arswer set of P;. Then, thee 15 an amswerset T of P; such that
T C S. By tshe ifpanw, T becomes an arswerset of P, & P,. This contadicts
the assumption that S 15 an amswerset of P @ P,. Smilay agument 15 app hied
when S satisfies P». a
Ezample 4.3. InExample 4.1, AS(Pi®& P2) = {{p}, {q}, {-p}}, theeby AS(P1 P
Py) = AS(P1) UAS(P).

4.2 Computing Rigorous Coordination

Next we p resent amethod of computing agorous coordination between twop ro-
grams.

Definition 4.2. Given twop rograms P; and Ps,

P1®P2: U R(P17S)UR(P23S)7
SEAS(P1)NAS(P2)

wheye AS(P1) N AS(Py) # 0 and
R(P,S) = { head(r) N S « body(r), not (head(r)\ S) | € P and r® € P59}
and not (head(r)\ S) ={not L | L € head(r)\ S }.

170 C. Sakama and K. Inoue

When AS(Py) N AS(P2) =0, Py ® P, 18 undefined.’

Intwtively, the p rogram Py ® P 15 a collection of pules which may be used for
corstpucting arswersets that aje conmon between Py and Pe. In R(P,S) any
hteral 1n head(r) which does not cont pbute to the corstyuction of the amswer
set S 15 shifted to the body as NAF-litejals. P; ® P, may contain redundant
rales, which aye elminated uSing p rogram tansfommatiors given in the p revious
subsection.

Ezample 4.4. Corsider $wo p rogams:

Py : p«< notq, notr,
q < notp, notr,
r < notp, notq,

Py: p;q;-r«<notr,

whee AS(P1) = {{p},{a}. {r}}, AS(P2) = {{p}.{¢},{-r}}, and AS(P1) N
.AS(PQ) = {{p}, {q}} Then, P, ® P> becomes

p < notq, notr,
q < notp, notr,
p < notr, notq, not —r,

q < notr, notp, not —r.
Here, the thiid and the fourh pales can be elminated by NONMIN.

By the defimtion, Py ® P> 15 computed 1n smme (|Py| + |P2|) x [AS(P1) N
AS(P;)| where |AS(P) N AS(P;)| 1ep resenss the number of amswer sets 1n
AS(P1) N AS(P2).

P ® P, reah es ngorous coordinasion of Py and Ps.

Lemma 4.3 Let P be a program. Then, S is an answer set of P iff S is an
answer set of R(P,S).

Proof. S 1s an arswerset of P 1iff S 15 an arswerset of P°

iff S 15 a minmal set such that body™(r) C S mphes head(r) NS # 0 for
every pule head(r) « body™ (r) in P° (). By the defimtion of R(P,S), the yule
head(r) < body* (r) 13 1n P off the coresp onding rale head(r) NS « body™ (r)
1 1n R(P,S)% (because body~(r) NS = 0 and (head(r) \ S) NS = 0). Hence,
the statemens () holds ff S 15 a mimmal set such that body™ (r) C S mphes
head(r) N S # 0 for every rule head(r) NS « body™ (r) in R(P, S)?

iff S 15 a mimmal set which satisfies every pule head(r) NS «— body™(r) 1n
R(P,S)%

iff S 15 an arswerset of R(P,S). 0

! Technically, Py ® P» is set as { p < notp} for any atom p.

Coordination Between Logical Agents 171

Theorem 4.4. Let Py and Py be two programs. Then, AS(P; ® Py) = AS(Py)N
AS(Py).

Proof. Swpp e S € AS(Py) N AS(P,). Then, S satisfies any yule head(r) «
body(r) 1n P; and P», so that S satsfies the corresp onding rules head(r) NT
body(r), not (head(r)\T) in R(P;, T)UR(P,,T) forany T € AS(P,) N AS(P,).
Thus, S satisfies P @ P>. Supp e that S 18 not an arswerses of Py ® P>. Then,
thee 13 a mimmal set U C S which satisfies evey pule in Py ® P,. In this case,
U satsfies R(P;,S). By Lemma 4.3, howeVer, S 18 a mimmal set which satisfies
R(P1,S). Contradiction. Hence, S 15 an arswerset of P ® Ps.

Convesely, supp e S € AS(P1®P,). Then, S 15 amimmalses which satis fies
eveyy pile head(r) N'T « body(r), not (head(r)\ T) in R(P1,T) U R(P,,T) for
any T € AS(P1)NAS(P,). By Lemma 4.3, T 1 als o aminmal set which satisfies
both R(P1,T) and R(P,,T), so that thee 15 a hteral L € S\ T and a hitepal
M e T\ S. HoweVer, any yale in R(Py,T)U R(P,,T) has the head head(r)NT,
so that no lteral L € S\ T 18 included 1n the head. Thus, L 18 not included 1n
the arswerset S, thereby S\ T = 0. As both T and S aye mimumal, T\ S = 0.
Hence, T'= S and S € AS(P1) N AS(P). O

Ezample 4.5. InExample 4.4, AS(P1®P») = {{p},{q}}, theeby AS(PI®P;) =
AS(Py) N AS(P).

4.3 Algebraic Properties
In this subsection, we p rovide p rgp erties of the peatiors & and ®.

Proposition 4.5 For programs Py, P», and P3, the operations & and ® have
the following properties:

(Z) Pl@PQZPQ@Pl and P1®P2:P2®P1,'
(ii)) (P1® Py)® Ps =P & (Pa® P3) if P, Py and P3 are NAF-free;
(iii) (P, ® Py) @ Py = P, ® (P, @ P3).

Proof. The resulss of (1) and (n) are styaighiforward. To see (), AS(P; ®
PQ) = AS(Pl) n AS(PQ) hO]dS b}' TheoIem 4.4. Then, bOth (Pl [029] Pg) ® P3
and P; ® (Pg ® P3) corsist of pules 1n R(P1, S) U R(Pg, S) U R(P3, S) for eveyy
S e AS(P1) NAS(P2) NAS(Ps). O

The geration @ 15 not associasive 1n geneyal when p rograms contain NAF,
but 18 holds the jelation AS((P1 @ Py) ® P3) = AS(Py & (P, @ P3)). @ 15 also
idempotent, P® P = P 1f NONMIN and DUPL are applied t0o P& P and P. ® 18
not 1demp otens but the relasion AS(P ® P) = AS(P) holds. By the defimtion,
P ® P has the effect of extyacting rales used for comst pucting arswersets of P.

By Prg ss1t1on 4.5, when pgorous coordination are done among more than
two agents, the order of conputing coordination does not affect the yesult of
final outcome. This 18 also the case for generous coordination when p rogams
are NAF-fiee.

172 C. Sakama and K. Inoue

Two types of coordination are mixed among agents. In this case, the absop-
t10on laws and the distpbution laws do not hold 1n geneal, 1.e.,

P1 D (P1 ®P2) 7é P1 and P1 X (Pl @PQ) 7é Pl;
Py ® (P, ® P3) # (P ® P,) @ (P, & Ps) and
PL@(P,®P;)# (PL®P) & (P @ Ps),

Note that p rograms are generally different, but the following relatiors hold
by the definitioms:

AS(P; & (P @ P))
AS(Py @ (P2 @ P3))
AS(Py ® (P2 @ P3))

AS(PL ® (P @ P)) = AS(P1),
AS((PL© Py) ® (P1 @ P3)),
AS((Pl ® PQ) ©® (Pl & PB))

5 Discussion

When a set of amswer sets 15 given, 18 18 not dificult to comstuct a p rogram
which has exactly these amswersets. Given a set of amswersets {S1,..., 5},
fist compute the disjunctive nomnal fom: Sy V --- V S, then convert 18 1o
the conjunctive nommal foqm: Ry A -+ A R,,. The set of facts {R1,..., R} then
has the amswersets {S1,...,Sn,}. This techm®ue 15 also wsed for computing
coordination between p rograms. For instance, Supp ose two p rogams:

Py . sweet «— strawberry,
strawberry «—,
Py red « strawberry,

strawberry «—,

whee AS(Py) = {{sweet, strawberry}} and AS(Ps) = {{red, strawberry}}.
To get generows coordination which has the amswersets AS(Py) U AS(P,),
taking the DNF of each arswerset p roduces

(sweet A strawberry) V (red A strawberry).
Converting 1% 1nto the CNF, 1t becomes
(sweet V red) A strawberry.
As a jesuli, the set of facts

Q. sweet; red «—,

strawberry «—

15 a program which 18 generous coordination of P; and P». On the other hand,
the p rogram P; & P, becomes

Coordination Between Logical Agents 173

sweet ; red < strawberry,

strawberry «—,

after elminating dup licated hiterals and redundant rules.

These swop rograms have the same meamng but have diffe ens syntax. Then,
a question 18 which one 18 mojep referable as a esult of coordination? Ouramswer
18 P} ® P5. The induition behind this selection 15 that we would like to 1nclude
as much 1nfopmation as p sible from the opginal p rograms. Compaying @ with
P, @ P, infommation of dependency between sweet (or red) and strawberry s
1% 1n Q.2 Generally sp eaking, if the e exist diffejent candidates forcoordinasion
between two p rograms, a p rogram which s syntactically clsser to the opginal
ones 15 p referred. Then, a Question 15 how tomeasuye such “syntactical closeness
between p rograms? One solution we have inmind 15, as illustated above, using
dependency relatiors between hiterals. We p refer a jesult of coordination which
inheqnts dependency relatiors from the opginal p rograms as much as p ssible.

Mozge p recisely, supp sse the dependency graph of ap rogram P 1n which each
node 1ep resenss a ground literal and there 13 a diected edge from Ly $o0 Lo (we
say L1 depends on Lo) ff there 18 a ground yule 1n P such that L; appeass 1n the
head and Lo appeas 1n the body of the pule. Let (L1, La) be apair of ground
Iiterals such that Ly depends on L2 1n the dependency graph of a p rogram.
Let §(P) be the collection of such pais 1n P. For two p rograms P; and Po,
supp e that two different p rograms P; and Py ae obtained as candidates for
coordination. Then, we say that P5 15 preferable to Py 1f

A(6(Ps),6(P1) U6(P2)) € A(6(Fs),0(P1) U (),

where A(S,T) rep resents thesymmet nc diffeence between swosets S and T, 1.e.,
(S\T) U (T\S). Applying to the above example, §(P;) = {(sweet, strawberry)},
d(P,) = {(red, strawberry)}, 6(Q) =0, and 6(P1 & P) = {(sweet, strawberry),
(red, strawberry)}. Then, A(§(P1® Ps), §(P1)Ud(Pe)) C A(6(Q),(P1)UI(FPe)),
so we conclude that P; @ P, 18 p referable to Q. Fugher elaboation would be
comsidered to Ieﬁect syntactical cleseness, but we do not pusue this ssue fugher
hee.

Coordinationsupp sses that different p rograms have e®ual standings and com-
bines these p rograms while maxmally keeping opginal infoymasion from them.
Thep roblem of combining logical theopes has beenstudied by sevejal reseachess
1n different contexts. Baral et al. [1] 1nt roduce algopthms for combimng logicp ro-
grams by enforcing satisfaction of 1integ ity corst aints. Forimstance, supp ose two
P rog rams:

Py p(x)

PQZ r

2 Technically, the program @ is obtained by unfolding rules in P; © P» [3, 11].

174 C. Sakama and K. Inoue

together with the integpty corst aints:

IC: < p(a),r(a),

—q(a),r(a).

They combine P; and P> and p roduce a new p rogram which satisfies IC as
follows:

Py: pla) — nota(z), = £ a,
q(b) < r(b),
g(a) Vr(a) —.

By comépast, (P UIC) @ P 1n our framework becomes?

p(x); r(a) < not q(z),
q(b); r(a) « r(b),
q(a); r(a) —,

after elminating tautologies. Companng two results, the p rogram Ps has two
amswersets {p(b),q(a)} and {p(b),r(a)}; by consyass, (P, UIC) @& P, has two
amswersets: {p(b),q(a)} and {r(a)}. Thus, the arswersets of Ps do not coincide
with those of the opginal p rograms. Indeed, they re®uest that every arswerset
of a resulting p rogram o be a subset of an amswerset of P; U Py. This 18 1n
cont @St to our app roach where we re®uest the result of coordination to keep
(pars of) the arswersets of the opginal p rograms. Another mp otant diffejence
18 that algopthms 11 [1] are not applhicable to umstyatified logic p rograms, while
ourmethod 18 applied to every extended disjuncéive p rogram.

The p roblem of program composition has beenstudied by seveal yeseajchess
(e.g., [4,6,12]). Tt combines different p rograms 1nso one. The p roblem 15 then
how top rovide the meanmng of a p rogram 1n temms of these comp onents. Brogt
etal. [4] introduce thiee meta-level geatiors for comp s1ng nomal logic p ro-
grams: union, inteBection, and yestpction. The umonsmply puts $wop rogams
together, and the intesection combines two p rograms by mejging pair of rales
with umfiable heads. For 118%ance, g1ven two p rog ams:

Py : likes(z,y) < not bitter(y),
hates(x,y) «— sour(y);
Py : likes(Bob,y) «— sour(y),

the program P} N P corsists of the single pale:
likes(Bob,y) < not bitter(y), sour(y).

The estuciion allows one to filier out sgne pules from a p rogram. They em-
ploy Fisting’s 3-valued fixp oint semaniics and show how one can conp ute the

3 Here IC is included in P; as we handle integrity constraints as a part of a program.

Coordination Between Logical Agents 175

semantics of the comp osed p rogram 1n tegns of the opginal p rograms. In the
context of nommal gen logic p rograms, Verbaeten et al. [12] introduce a vapant
of the well-founded semantics, and 1dentify condisiors for twop rograms P; and
P, tosatisfy the equality Mod(P;UP,) = Mod(P;)NMod(P;) whee Mod(P) 1s
the set of modek of P. Etalle and Teusink [6] corsider thee-valued completion
semantics forp rogram comp sis1on as the union of nommal g enp rograms. Com-
panng these thiee studies with ous, both p rogram gerations and undedying
semantics are differens from ous. Moreover, the goal of p rogram conp ik1on 18
to comnpute the meaning of the whole p rogram 1n temms of 1#s subp rogams; on
the other hand, our goal 18 to comstuct a p rogram whase arswer sets are the
1.1nlon/1nte15ect10n of the opginal p rograms.

Comnbination of p rgp s1t1onal theoypies has been studied undey the names of
merging [8] or arbitration [9]. The goal of these esearch 13 to p rovide a new
theoyy which 15 cormsistent and p reserVes as much infognation as p ssible from
their sources. Mejging 18 diffejent from coordination p resented 1n this paper.
For 1stance, two theopes P, = {p <} and P» = {¢ <} aje mejged 1nto
P;={p+< , q«< } By contmst, generous coordination of P; and P> becomnes
Py ®P,={p; g} Thus, in contast o generous coordination, meyging does
not p reserVe arswersets of the onginal p rograms. Inmeging different behefs by
diffeent agents aje mixed together as far as they aje comsistent, which makes 1%
dificult to distingwsh the opginal beliefs of one agent aftermeyging. This mp hes
the p roblem that opginal behefs of one agent are hayd to recover when one of
the infopnation sources turms out incorrect. For 1rstance, supp ose an agent has
the program Py, = {p; ¢ < } and new infoimation P, = {p < } arnves. If P,
and P, aje mejged, the yesult becomes Ps = {p < }. Later, 18 $umrs ous that the
fact p in P, does not hold. At this stage, the agent cannot recover the opnginal
program P, from Ps. By contast, if generous coordination 15 done, 18 becomes
P, ® P, = P, and the opginal infoqnation Py 15 kept.

Ciamp olin et al. [5] 1nt roduce a language for coordinating logic-based agents.
They handle two types of coordination: collabormation and competition. Theiy
goal 8 tosolve these different types of ®uepes using abduction, and not $o con-
styuct ap rogram as a yesult of coordination. Recently, Meyer et al. [10] 1nt roduce
a logical framework for negotiating agenss. They 11t roduce two diffejent modes
of negotiation: concession and adapsation. They chajacten e such negotiation
by rational p stulates and p rovide methods for comstyacting outcomes. The
p cstulates are not generally applied to nonm onotonic theopes, and 1n this serse
coordination comsidered 1n this paper s beside the subject of these p sstulates.

Coordination 1nt roduced 1n this paper1s naive in the serse that 1t just takes
the umon/inte section of diffejent collecsiors of arswer sets. We can develg
vapants of coordination by 1ntroducing stmategies that depend on situatiors.
For 1mstance, when there aye more than two agents, 1t 18 comsidered to take
the majority 1ndo account as 1n [8]. Given collectiors of arswer sets by thiee
agents, { S1, 52,55 }, { 52,54}, and {51, S5 }, such majonty p pncple allows us
to build { 51,52} as a yesulé of coordination, whese membey 18 supp orved by
more than one agent. Pponties between agents aje also corsiderable. In the

176 C. Sakama and K. Inoue

above example, 1f the second agent 13 m st ehable, we can have a choice to take
S4 1nbo accouns. We can al o corsider finer grairs of canp ¢sit1ors such as having
S1USy or S1 NSy as a result of coordination from two arswersess S; and Ss
(where S U Sy 18 assumed corsistent). Detailed studies onsuch vapants ae left
to fugher eseach.

6 Concluding Remarks

This paper has studied coordination between logical agents. Given muliple
agemts as logic p rograms, two different sypes of coordination have been 1t ro-
duced and theiy comp utational methods have been p rovided. We have venfied
that the p rqp sed methods reali e generous/ngorous coordination between logic
p rograms. Ouyr coordination framework p rovides a comp cs1t1onal semantics of
muliple agents and serVes as a declapative basis for accomm odation 1n multi-
agent systems. From the Viewp oint of amswerset p rogramming, the p rocess of
conp uiing coordination s comsidered as ap rogram develgpment under a sp ecifi-
cation that e®uests ap rogram Ieﬂectmg the meamngs of two ormose p rogams.
This relates to the 1ssue of p rogram comp os1810n under the amswer set seman-
t1s. This paper corsidered the arswer set semantics but a similay framework
would be develgp ed undey diffeyent semantics (shough comp utasional methods
ae likely to be diffejent).

Theqe 5 stll room for mp rovement 1n comp uting generous / fggorods coordi-
nation. The gerations @ and ® 1ntroduced 1n this paper e conputation
of arswersets of opginal p rograms, but 1t 15 much better if coordination can be
comstriacted by purely syntactic manp ulation without computing these amswer
sets. Fupher, the gpemation ® p roduces a disjunctive p rogram even when the
onginal p rograms aje non-disjunceive p rograms. The resulting disjunciive p ro-
gram 18 reduced to a non-disjuncéive one if 18 15 head-cycle-free, but this 18 not
the case 1n general. At the moment, we do not have s olutiors for these p roblems.
In future work, we will yefine our framework and also investigate other types
of coordination and collaboration as well as theiy chaactepn ation 1n teyns of
comp uational logic.

References

1. C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEFE
Transactions of Knowledge and Data Engineering 3(2):208-220, 1991.

2. C. Baral and M. Gelfond. Logic programming and knowledge representation. Jour-
nal of Logic Programming 19/20:73-148, 1994.

3. S. Brass and J. Dix. Characterizations of the disjunctive stable semantics by partial
evaluation. Journal of Logic Programming 32(3):207-228, 1997.

4. A. Brogi, S. Contiero, and F. Turini. Composing general logic programs. Proc. j4th
International Conference on Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Artificial Intelligence 1265, pp. 273-288, Springer, 1997.

10.

11.

12.

Coordination Between Logical Agents 177

A. Ciampolini, E. Lamma, P. Mello, F. Toni, and P. Torroni. Cooperation and
competition in ALIAS: a logic framework for agents that negotiate. Annals of
Mathematics and Artificial Intelligence 37(1/2), pp. 65-91, 2003.

S. Etalle and F. Teusink. A compositional semantics for normal open programs.
Proceedings of the Joint International Conference and Symposium on Logic Pro-
grammang, pp. 468-482, MIT Press, 1996.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4):365-385, 1991.

S. Konieczny and R. Pino-Pérez. On the logic of merging. Proceedings of the 6th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pp. 488-498, Morgan Kaufmann, 1998.

P. Liberatore and M. Schaerf. Arbitration (or how to merge knowledge bases).
IEEE Transactions on Knowledge and Data Engineering 10(1):76-90, 1998.

T. Meyer, N. Foo, R. Kwok, and D. Zhang. Logical foundation of negotiation:
outcome, concession and adaptation. Proceedings of the 19th National Conference
on Artificial Intelligence, pp. 293-298, MIT Press, 2004.

C. Sakama and H. Seki. Partial deduction in disjunctive logic programming. Jour-
nal of Logic Programming 32(3):229-245, 1997.

S. Verbaeten, M. Denecker, and D. De. Schreye. Compositionality of normal open
logic programs. Proceedings of the 1997 International Symposium on Logic Pro-
grammang, pp. 371-385, MIT Press, 1997.

A Computational Model for Conversation Policies
for Agent Communication

Jamal Bentahar!, Bernard Moulin!, John-Jules Ch. Meyer?,
and Brahim Chaib-draa!

!'Laval University, Department of Computer Science and Software Engineering, Canada
jamal .bentahar.l@ulaval.ca
{bernard.moulin, brahim.chaib-draa}@ift.ulaval.ca
2 University Utrecht, Department of Computer Science, The Netherlands
jj@cs.uu.nl

Abstract. In this paper we propose a formal specification of a persuasion
protocol between autonomous agents using an approach based on social
commitments and arguments. In order to be flexible, this protocol is defined as
a combination of a set of conversation policies. These policies are formalized as
a set of dialogue games. The protocol is specified using two types of dialogue
games: entry dialogue game and chaining dialogue games. The protocol
terminates when exit conditions are satisfied. Using a tableau method, we prove
that this protocol always terminates. The paper addresses also the
implementation issues of our protocol using logical programming and an agent-
oriented platform.

1 Introduction

Research in agent communication has received much attention during the past years
[9; 13; 14]. Agent communication protocols specify the rules of interaction governing
a dialogue between autonomous agents in a multi-agent system. These protocols are
patterns of behavior that restrict the range of allowed follow-up utterances at any
stage during a dialogue. Unlike protocols used in distributed systems, agent
communication protocols must take into account the fact that artificial agents are
autonomous and proactive. These protocols must be flexible enough and must also be
specified using expressive formalisms. Indeed, logic-based protocols seem an
interesting way for specifying these protocols [3; 16].

On the one hand, conversation policies [18] and dialogue games [12; 21] aim at
offering more flexible protocols [20]. This is achieved by combining different policies
and games to construct complete and more complex protocols. In this paper we argue
that conversation policies and dialogue games are related and can be used together to
specify agent communication. Conversation policies are declarative specifications that
govern communication between autonomous agents. We propose to formalize these
policies as a set of dialogue games. Dialogue games are interactions between players,
in which each player moves by performing utterances according to a pre-defined set
of roles. Indeed, protocols specified using, for example, finite state machines are not
flexible in the sense that agents must respect the whole protocol from the beginning to

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 178 - 195, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Computational Model for Conversation Policies for Agent Communication 179

the end. Thus, we propose to specify these protocols by small conversation policies
that can be logically put together using a combination of dialogue games.

On the other hand, in the last years, some research works addressed the importance
of social commitments in the domain of agent communication [4; 5; 11; 20; 24; 27].
These works showed that social commitments are a powerful representation to model
multi-agent interactions. Commitments provide a basis for a normative framework
that makes it possible to model agents’ communicative behaviors. This framework
has the advantage of being expressive because all speech act types can be represented
by commitments [11]. Commitment-based protocols enable the content of agent
interactions to be represented and reasoned about [17; 28]. In opposition to the BDI
mental approach, the commitment-approach stresses the importance of conventions
and the public aspects of dialogue. A speaker is committed to a statement when he
makes this statement or when he agreed upon this statement made by another
participant. In fact, we do not speak here about the expression of a belief, but rather
about a particular relationship between a participant and a statement. What is
important in this approach is not that an agent agrees or disagrees upon a statement,
but rather the fact that the agent publicly expresses agreement or disagreement, and
acts accordingly.

In this paper we present a persuasion dialogue which is specified using
conversation policies, dialogue games and a framework based on commitments. In
addition, in order to allow agents to effectively reason on their communicative
actions, our framework is also based on an argumentative approach. In our framework
the agent’s reasoning capabilities are linked to their ability to argue. In this paper we
consider conversation policies as units specified by dialogue games whose moves are
expressed in terms of actions that agents apply to commitments and arguments.
Indeed, the paper presents three results: 1- A new formal language for specifying a
persuasion dialogue as a combination of conversation policies. 2- A termination proof
of the dialogue based on a tableau method [10]. 3- An implementation of the
specification using an agent oriented and logical programming.

The paper is organized as follows. In Section 2, we introduce the main ideas of our
approach based on commitments and arguments. In Section 3 we address the
specification of our persuasion protocol based on this approach. We present the
protocol form, the specification of each dialogue game and the protocol dynamics.
We also present our termination proof. In Section 4 we describe the implementation
of a prototype allowing us to illustrate how the specification of dialogue games is
implemented. In Section 5 we compare our protocol to related work. Finally, in
Section 6 we draw some conclusions and we identify some directions for future work.

2 Commitment and Argument Approach

2.1 Social Commitments

A social commitment SC is a public commitment made by an agent (the debtor), that
some fact is true or that something will be done. This commitment is directed toward
a set of agents (creditors) [8]. A commitment is an obligation in the sense that the
debtor must respect and behave in accordance with this commitment. A representation

180 J. Bentahar et al.

of this notion as directed obligations using a deontic logic is proposed in [19].
Commitments are social in the sense that they are expressed publicly. Consequently,
they are different from the private mental states like beliefs, desires and intentions. In
order to model the dynamics of conversations, we interpret a speech act SA as an
action performed on a commitment or on its content [4]. A speech act is an abstract
act that an agent, the speaker, performs when producing an utterance U and
addressing it to another agent, the addressee. In the dialogue games that we specify in
Section 3, the actions that an agent can perform on a commitment are: Acte { Create,
Withdraw}. The actions that an agent can perform on a commitment content are: Act-
contente {Accept, Refuse, Challenge, Defend, Attack, Justify}. In our framework, a
speech act is interpreted either as an action applied to a commitment when the speaker
is the debtor, or as an action applied to its content when the speaker is the debtor or
the creditor [4]. Formally, a speech act can be defined as follows:

Definition 1. SA(Ag;, Ag2, U) =4 Act(Ag1, SC(Ag;, A2, P))
| Act-content(Ag, SC(Agi, Ag), p))

where i, j € {1,2} and (k =i or k =), p is the commitment content. The definiendum
SA(Ag;, Ag,, U) is defined by the definiens Act(Ag;, SC(Ag;, Agz, p)) as an action
performed by the debtor Ag; on its commitment. The definiendum is defined by the
definiens Act-content(Agy, SC(Ag;, Agj, p)) as an action performed by an agent Ag
(the debtor or the creditor) on the commitment content.

2.2 Argumentation and Social Commitments

An argumentation system essentially includes a logical language L, a definition of the
argument concept, and a definition of the attack relation between arguments. Several
definitions were also proposed to define arguments. In our model, we adopt the
following definitions from [15]. Here 7 indicates a knowledge base with deductive
closure. - Stands for classical inference and = for logical equivalence.

Definition 2. An argument is a pair (H, h) where h is a formula of L and H a sub-set
of I'such that : i) H is consistent, it) H ~ h and iii) H is minimal, so no subset of H
satisfying both i and ii exists. H is called the support of the argument and h its
conclusion. We use the notation: H = Support(Ag, h) to indicate that agent Ag has a
support H for h.

Definition 3. Let (H,, h,), (H,, h,) be two arguments. (H,, h,) attacks (H,, h,) iff h;
=-h,

In fact, before committing to some fact i being true (i.e. before creating a
commitment whose content is /), the speaker agent must use its argumentation system
to build an argument (H, k). On the other side, the addressee agent must use its own
argumentation system to select the answer it will give (i.e. to decide about the
appropriate manipulation of the content of an existing commitment). For example, an
agent Ag; accepts the commitment content s proposed by another agent if Ag; has an
argument for h. If Ag; has an argument neither for 4, nor for —h, then it challenges /.

A Computational Model for Conversation Policies for Agent Communication 181

In our framework, we distinguish between arguments that an agent has (private
arguments) and arguments that this agent used in its conversation (public arguments).
Thus, we use the notation: S = Create_Support(Ag;, SC(Ag;, Agy, p)) to indicate the
set of commitments S created by agent Ag; to support the content of SC(Ag;, Agz, p).
This support relation is transitive i.e.:

(SC(Ag 1, Ag2, p2) € Create_Support(Ag, SC(Ag;, Ag2, p1))
ASC(Ag;, Ags, py) € Create_Support(Ag, SC(Ag;, Aga, Po)))
SC(Ag;, Agz, p2) € Create_Support(Ag, SC(Ag;, Ag2, Po))

Other details about our commitment and argument approach are described in [4].
Surely, an argumentation system is essential to help agents to act on commitments
and on their contents. However, reasoning on other social attitudes should be taken
into account in order to explain the agents’ decisions. In our persuasion protocol we
use the agents’ trustworthiness to decide, in some cases, about the acceptance of
arguments [6].

3 Conversation Policies for Persuasion Dialogue

3.1 Protocol Form

Our persuasion protocol is specified as a set of conversation policies. In order to be
flexible, these policies are defined as initiative/reactive dialogue games. In
accordance with our approach, the game moves are considered as actions that agents
apply to commitments and to their contents. A dialogue game is specified as follows:

Action_Ag; ﬂp Action_Ag,

This specification indicates that if an agent Ag; performs the action Action_Ag,
and that the condition Cond is satisfied, then the interlocutor Ag, will perform the
action Action_Ag,. The condition Cond is expressed in terms of the possibility of
generating an argument from the agent’s argumentation system and in terms of the
interlocutor’s trustworthiness. We use the notation: pnArg_Sys(Ag;) to denote the fact
that a propositional formula p can be generated from the argumentation system of Ag;
denoted Arg_Sys(Ag;). The formula —(poArg_Sys(Ag;)) indicates the fact that p
cannot be generated from Ag;’s argumentation system. A propositional formula p can
be generated from an agent’s argumentation system, if this agent can find an
argument that supports p. To simplify the formalism, we use the notation Act’(Ag,,
SC(Ag;, Agj, p)) to indicate the action that agent Ag, performs on the commitment
SC(Ag;, Agj, p) or on its content (Act’e {Create, Withdraw, Accept, Challenge,
Refuse}). For the actions related to the argumentation relations, we write Act-Arg(Ag.,
[SCAg,, Agw» q)], SC(Agi, Agj, p)). This notation indicates that Ag, defends (resp.
attacks or justifies) the content of SC(Ag;, Agj, p) by the content of SC(Ag,, Agm, q)
(Act-Arge {Defend, Attack, Justify}). The commitment that is written between square
brackets [] is the support of the argument. In a general way, we use the notation
Act’(Ag,, S) to indicate the action that Ag, performs on the set of commitments S or on
the contents of these commitments, and the notation Act-Arg(Ag,., [S], SC(Ag;, Ag), p))

182 J. Bentahar et al.

to indicate the argumentation-related action that Ag, performs on the content of
SC(Ag;, Agj, p) using the contents of S as support. We also introduce the notation Act-
Arg(Ag,, [S], S’) to indicate that Ag, performs an argumentation-related action on the
contents of a set of commitments S’ using the contents of S as supports.

We distinguish two types of dialogue games: entry game and chaining games. The
entry game allows the two agents to open the persuasion dialogue. The chaining
games make it possible to construct the conversation. The protocol terminates when
the exit conditions are satisfied (Figure 1).

Entry game

.. Exit conditions (Termination)
Chaining games >

Fig. 1. The general form of the protocol

3.2 Dialogue Games Specification

A Entry Game

The conversational policy that describes the entry conditions in our persuasion
protocol about a propositional formula p is described by the entry dialogue game as
follows (Specification 1):

Accept(Ag,, SC(Ag;, Agz, p)) —> Termination
a;

b
Create(Ag,;, SC(Ag;, Ag,, p)) &> Challenge(Ag,, SC(Ag;, Aga, p)) —> Information-

seeking Dialogue
C]

-«
Refuse(Ag,, SC(Ag;, Ag2, p)) —> Persuasion Dialogue

where a;, b; and c; are three conditions specified as follows:
a; =poArg_Sys(Agz)

by =—(poArg_Sys(Agz)) A —~(—poArg_Sys(Ag)))

¢; = —pOArg_Sys(Agz)

If Ag, has an argument for p then it accepts p (the content of SC(Ag,, Ag,, p)) and
the conversation terminates as soon as it begins (Condition a;). If Ag, has neither an
argument for p nor for —p, then it challenges p and the two agents open an
information-seeking dialogue (condition b;). The persuasion dialogue starts when Ag,
refuses p because it has an argument against p (condition c;).

B Defense Game

Once the two agents opened a persuasion dialogue, the initiator must defend its point
of view. Thus, it must play a defense game. Our protocol is specified in such a way
that the persuasion dynamics starts by playing a defense game. We have
(Specification 2):

A Computational Model for Conversation Policies for Agent Communication 183
Accept(Ag,, S;)

b
Defend(Ag, [S], SC(Ag1, Ag2, P)) 2% Challenge(Agy, Sy)

(&)
Attack(Ag:, [S7], S3)
where:
S={SC(AgI,Agz,pi)/i=0,...,n} , pi are propositional formulas.

hi,Si=S, SinS=0,i,j=1.3&i#j
By definition, Defend(Ag;, [S], SC(Ag;, Agz, p)) means that Ag; creates S in order
to defend the content of SC(Ag;, Ag», p). Formally:
Defend(Ag, [S1, SC(Ag1, Aga, p)) =ay (Create(Ag;, S)
A S = Create_Support(Ag;, SC(Ag;, Aga, P)))

We consider this definition as an assertional description of the Defend action.

This specification indicates that according to the three conditions (a,, b, and c;),
Ag, can accept a subset S; of S, challenge a subset S, and attack a third subset S;. Sets
S; and S; are mutually disjoint because Ag, cannot, for example, both accept and
challenge the same commitment content. Accept, Challenge and Attack a set of
commitment contents are defined as follows:

Accept(Ags, S1) =aer (Vi, SC(Ag), Ag2, p) € S; Accept(Agz, SC(Ag), Agz, i)
Challenge(Aga, S2) =4er (Vi, SC(Ag;, Ag2, p) € Sz Challenge(Ag,, SC(Ag,, Agz, Pi))
Attack(Aga, [S°), S3) =4y Vi, SC(Ag), Aga,p) € S; 38, S

Attack(Agy, [S’j], SC(Ag1, Ag2, i)

where: ., S’ =S’ This indication means that any element of S’ is used to attack

one or more elements of S;.
The conditions a,, b, and c; are specified as follows:
a=Vi, SC(Ag;, Ag2, p) € S; pi0Arg_Sys(Ag2)
by =Vi, SC(Ag;, Ag2,pi) € Sz (—(pidArg_Sys(Ag2)) A—(—pinArg_Sys(Ag»)))
c;=Vi,SC(Ag;, Ag2,p) e S 38,2 S, Content(S’;) = Support(Agz, —p,)

where Content(S’;) indicates the set of contents of the commitments S”;.

C Challenge Game
The challenge game is specified as follows (Specification 3):

Challenge(Ag,, SC(Ag, Agi, p)) ——— Justify(Agy. [S], SC(Ags Ag.)

where the condition a; is specified as follows:
a; = (Content(S) = Support(Ag,, p))

In this game, the condition a; is always true. The reason is that in accordance with
the commitment semantics, an agent must always be able to defend the commitment it
created [5].

184 J. Bentahar et al.

D Justification Game
For this game we distinguish two cases:

Casel. SC(Ag;, Ag>, p) € S

In this case, Ag, justifies the content of its commitment SC(Ag,, Ag,, p) by creating a
set of commitments S. As for the Defend action, Ag, can accept, challenge and/or
attack a subset of S. The specification of this game is as follows (Specification 4):

Accepi(Ag, S1)
ay

Justify(Ag;, [S], SC(Ag1, Ag2,) by Challenge(Ags, S5)

Cy4
Attack(Ag,, [S’], S3)
where:

S=t SC(Agl,Agz,pi)/i=0,...,n}, p; are propositional formulas.

i, Si=S, SinSi=0,i,j=1.3&i#j
a;=ax by=by, cy=c;

Case2. {SC(Ag1, Ag2 p)} =S
In this case, the justification game has the following specification (Specification 5):

. Accept(Ag,, SC(Ag;, Ag2, p))
4

Justify(Ag,, [S], SC(Ag,, Ag2, p))
Refuse(Ag,, SC(Ag;, Ag2, p))

Ag; justifies the content of its commitment SC(Ag;, Ag,, p) by itself (i.e. by p).
This means that p is part of Ag;’s knowledge. Only two moves are possible for Ag,: 1)
accept the content of SC(Ag;, Ag,, p) if Ag; is a trustworthy agent for Ag, (a’y), 2) if
not, refuse this content (b’,). Ag, cannot attack this content because it does not have
an argument against p. The reason is that Ag; plays a justification game because Ag,
played a challenge game.

Like the definition of the Defend action, we define the Justify action as follows:
Justify(Ag, [S], SC(Ag, A2, p)) =ar (Create(Ag, S)

A S = Create_Support(Ag;, SC(Ag;, Agz, D))

This means that Ag; creates the set S of commitments to support the commitment
SC(Ag;, Agz, p).

E Attack Game
The attack game is specified as follows (Specification 6):
Refuse(Ags, S)
as

bs Accept(Ag, S>)
Attack(Ag,, [S], SC(Ag2, Ag1, p))
Cs Challenge(Ag>, S3)
ds
Attack(Ags, [S’], S4)

A Computational Model for Conversation Policies for Agent Communication 185

where:
S ={SC(Ag1,Ag »P)! i=0,...,n}, p;: are propositional formulas.

R, Si=S,Card(S)=1, Sin § =D, i,j=1,..4&i+# j

Formally, the Attack action is defined as follows:
Attack(Ag, [S], SC(Ag2, Ag/, P)) =aer (Create(Ag;, SC(Ag;, Agz, —p)) A Create(Ag;, S)
A 8 = Create_Support(Ag;, SC(Ag;, Agz, —p)))

This means that by attacking SC(Ag,, Ag;, p), Ag; creates the commitment SC(Ag;,
Ag», —p) and the set S to support this commitment.
The conditions as, bs, cs and ds are specified as follows:
as=3i: SC(Ag,, Ag, pi) € Create_Support(Ag,, SC(Ag,, Ag;, —q))
where S; = {SC(Ag;, Ag2, q)}
bs=Vi, SC(Ag;, Ag2, p) € S2 pidArg_Sys(Agz)
cs=Vi, SC(Ag;, Ag2, pi) € S (—(pivArg_Sys(Agz)) A—(—pi0Arg_Sys(Ag»)))
ds=Vi, SC(Ag;, Ag2,p) e Sy IS’ 8’ Content(S’;) = Support(Agz, —p;)

A Ak: SC(Ag>, Agy, p) € Create_Support(Ag,, SC(Ags, Agi, —p)))

Ag, refuses Ag;’s argument if Ag, already attacked this argument. In other words,
Ag, refuses Ag,’s argument if Ag, cannot attack this argument since it already
attacked it, and it cannot accept it or challenge it since it has an argument against this
argument. We have only one element in S; because we consider a refusal move as an
exit condition. The acceptance and the challenge actions of this game are the same as
the acceptance and the challenge actions of the defense game. Finally, Ag, attacks
Ag;’s argument if Ag, has an argument against Ag,’s argument, and if Ag, did not
attack Ag;’s argument before. In ds, the universal quantifier means that Ag, attacks all
Ag;’s arguments for which it has an against-argument. The reason is that Ag, must act
on all commitments created by Ag;. The temporal aspect (the past) of as and ds is
implicitly integrated in Create_Support(Ag,, SC(Ag,, Ag;, —gq)) and
Create_Support(Ag,, SC(Ag2, Agi, —D)))-

F Termination
The protocol terminates either by a final acceptance or by a refusal. There is a final
acceptance when Ag; accepts the content of the initial commitment SC(Ag;, Ag,, p) or
when Ag; accepts the content of SC(Ag,, Ag;, —p). Ag, accepts the content of SC(Ag;,
Ag,, p) iff it accepts all the supports of SC(Ag,, Ag;, p). Formally:
Accept(Ag,, SC(Ag), Ag2, p)) &

[Vi, SC(Ag;, Ag, p;) € Create_Support(Ag;, SC(Ag;, Aga, P))

Accept(Ag,, SC(Ag,, Ag2, pi))]

The acceptance of the supports of SC(Ag;, Ag,, p) by Ag, does not mean that they
are accepted directly after their creation by Ag;, but it can be accepted after a number
of challenge, justification and attack games. When Ag, accepts definitively, then it
withdraws all commitments whose content was attacked by Ag;. Formally:
Accept(Ag,, SC(Ag,, Ag,.p)) Vi, VS, Attack(Ag,, [S], SC(Ag,, Ag,, p))

Withdraw(Ag,, SC(Ag,, Agi, pi)]

186 J. Bentahar et al.

On the other hand, Ag, refuses the content of SC(Ag;, Ag,, p) iff it refuses one of
the supports of SC(Ag,, Agz, p). Formally:
Refuse(Aga, SC(Ag), Ag2, p)) &
[Ji: SC(Ag;, Ags, pi)e Create_Support(Ag;, SC(Ag;, Agz, p))
A Refuse(Ag,, SC(Ag1, Ag2, pi))]

3.3 Protocol Dynamics

The persuasion dynamics is described by the chaining of a finite set of dialogue
games: acceptance move, refusal move, defense, challenge, attack and justification
games. These games can be combined in a sequential and parallel way (Figure 2).

1 %) 13 Iy
Acceptance
Defense game Challenge game |y Justification gamek ” v
Acceptance A
Attack game §—> Challenge game [____p
Attack game =~ =<1 Z::->
Refusal — Termipation

Fig. 2. The persuasion dialogue dynamics

After Ag,’s defense game at moment ¢;, Ag, can, at moment ¢,, accept a part of the
arguments presented by Ag;, challenge another part, and/or attack a third part. These
games are played in parallel. At moment f;, Ag; answers the challenge game by
playing a justification game and answers the attack game by playing an acceptance
move, a challenge game, another attack game, and/or a final refusal move. The
persuasion dynamics continues until the exit conditions become satisfied (final
acceptance or a refusal). From our specifications, it follows that our protocol plays the
role of the dialectical proof theory of the argumentation system.

Indeed, our persuasion protocol can be described by the following BNF grammar:
Persuasion protocol : Defense game ~ Dialogue games
Dialogue games : (Acceptance move

/I (Challenge game ~ Justification game ~ Dialogue games)
Il (Attack game ~ Dialogue games))
| refusal move

where: “~ is the sequencing symbol, “//” is the possible parallelization symbol. Two
games Gamel and Game 2 are possibly parallel (i.e. Gamel // Game?2) iff an agent

can play the two games in parallel or only one game (Gamel or Game?2).

3.4 Termination Proof

Theorem. The protocol dynamics always terminates.

A Computational Model for Conversation Policies for Agent Communication 187

Proof. To prove this theorem, we use a tableau method [10]. The idea is to formalize
our specifications as tableau rules and then to prove the finiteness of the tableau.
Tableau rules are written in such a way that premises appear above conclusions.
Using a tableau method means that the specifications are conducted in a top-down
fashion. For example, specification 2 (p 3.2) can be expressed by the following rules:

. Defend(Ag,,[S],SC(p)) R2: Defend(Ag,,[S1,SC(p))
’ Accept(Ag,,S1) ' Challenge(Ag,,S))

R Defend(Ag,,[S1,SC(p))
" Attack(Ag,,[S'],S))

R1

We denote the formulas of our specifications by o, and we define E the set of o
We define an ordering 7 on E and we prove that 7 has no infinite ascending chains.
Intuitively, this relation is to hold between o; and o, if it is possible that o; is an
ancestor of 0, in some tableau. Before defining this ordering, we introduce some
notations: Act*(Ag, [S], S”) with Act* € {Act’, Act-Arg} is a formula. We notice that
formulas in which there is no support [S], can be written as follows: Act*(Ag, [4], S°).
o[S] —f olS’] indicates that the tableau rule R has the formula ofS] as premise and
the formula o{S’] as conclusion, with o{S] = Act*(Ag, [S], S’). The size ISI is the
number of commitments in S.

Definition 4. Let o{S;] be a formula and E the set of o[S;]. The ordering h on E is
defined as follows. We have o[Sy] h oS;] if:

IS;1 < 1Syl or

For all rules Ri such that o{Sy] —ro 01S;] =r; 01S2]... =&, 01S,] we have IS,| = 0.

Intuitively, in order to prove that a tableau system is finite, we need to prove the
following:
1-if o[Sy] —& olS;] then o[Sy] 7 ofS;].

2- 1 has no infinite ascending chains (i.e. the inverse of # is well-founded).

Property 1 reflects the fact that applying tableau rules results in shorter formulas,
and property 2 means that this process has a limit. The proof of 1 proceeds by a case
analysis on R. Most cases are straightforward. We consider here the case of R3. For
this rule we have two cases. If IS;| < ISyl, then olSy] & olS;]. If IS;I = ISyl, the rules
corresponding to the attack specification can be applied. The three first rules are
straightforward since S, = ¢@. For the last rule, we have the same situation that R3.
Suppose that there is no path in the tableau o{Sy] —ro 0 [S;] —=r; O[S2]... —r. O[S,]
such that IS,| = 0. This means that i) the number of arguments that agents have is
infinite or that ii) one or several arguments are used several times. However, situation
i is not possible because the agents’ knowledge bases are finite sets, and situation ii is
not allowed in our protocol.

Because the definition of 7 is based on the size of formulas and since ISyl € N (<
o) and < is well-founded in N, it follows that there is no infinite ascending chains of
the form olSy] & olS;]...

188 J. Bentahar et al.

4 Implementation

In this section we describe the implementation of the different dialogue games using
the Jack™ platform [25]. We chose this language for three main reasons:

I- It is an agent-oriented language offering a framework for multi-agent system
development. This framework can support different agent models.

2- It is built on top of and fully integrated with the Java programming language. It
includes all components of Java and it offers specific extensions to implement agents’
behaviors.

3- It supports logical variables and cursors. These features are particularly helpful
when querying the state of an agent’s beliefs. Their semantics is mid-way between
logic programming languages with the addition of type checking Java style and
embedded SQL.

4.1 General Architecture

Our system consists of two types of agents: conversational agents and trust model
agents. These agents are implemented as Jack” agents, i.e. they inherit from the basic
class Jack™ Agent. Conversational agents are agents that take part in the persuasion
dialogue. Trust model agents are agents that can inform an agent about the
trustworthiness of another agent.

According to the specification of the justification game, an agent Ag, can play an
acceptance or a refusal move according to whether it considers that its interlocutor
Ag; is trustworthy or not. If Ag; is unknown for Ag,, Ag, can ask agents that it
considers trustworthy for it to offer a trustworthiness assessment of Ag;. From the
received answers, Ag, can build a trustworthiness graph and measure the
trustworthiness of Ag;. This trustworthiness model is described in detail in [6].

4.2 Implementation of the Dialogue Games

To be able to take part in a persuasion dialogue, agents must possess knowledge bases
that contain arguments. In our system, these knowledge bases are implemented as
Jack™ beliefsets. Beliefsets are used to maintain an agent’s beliefs about the world.
These beliefs are represented in a first order logic and tuple-based relational model.
The logical consistency of the beliefs contained in a beliefset is automatically
maintained. The advantage of using beliefsets over normal Java data structures is that
beliefsets have been specifically designed to work within the agent-oriented paradigm.

Our knowledge bases (KBs) contain two types of information: arguments and
beliefs. Arguments have the form ([Support], Conclusion), where Support is a set of
propositional formulas and Conclusion is a propositional formula. Beliefs have the
form ([Belief], Belief) i.e. Support and Conclusion are identical. The meaning of the
propositional formulas (i.e. the ontology) is recorded in a beliefset whose access is
shared between the two agents.

To open a dialogue game, an agent uses its argumentation system. The
argumentation system allows this agent to seek in its knowledge base an argument for
a given conclusion or for its negation (“against argument”). For example, before

A Computational Model for Conversation Policies for Agent Communication 189

creating a commitment SC(Ag;, Agz, p), agent Ag; must find an argument for p. This
enables us to respect the commitment semantics by making sure that agents can
always defend the content of their commitments.

Agent communication is done by sending and receiving messages. These messages
are events that extend the basic Jack™ event: MessageEvent class. MessageEvents
represent events that are used to communicate with other agents. Whenever an agent
needs to send a message to another agent, this information is packaged and sent as a
MessageEvent. A MessageEvent can be sent using the primitive: Send(Destination,
Message). In our protocol, Message represents the action that an agent applies to a
commitment or to its content, for example: Create(Ag;, SC(Ag;, Ag», p)), etc.

Our dialogue games are implemented as a set of events (MessageEvents) and plans.
A plan describes a sequence of actions that an agent can perform when an event
occurs. Whenever an event is posted and an agent chooses a task to handle it, the first
thing the agent does is to try to find a plan to handle the event. Plans are methods
describing what an agent should do when a given event occurs.

Each dialogue game corresponds to an event and a plan. These games are not
implemented within the agents’ program, but as event classes and plan classes that are
external to agents. Thus, each conversational agent can instantiate these classes. An
agent Ag; starts a dialogue game by generating an event and by sending it to its
interlocutor Ag,. Ag, executes the plan corresponding to the received event and
answers by generating another event and by sending it to Ag;. Consequently, the two
agents can communicate by using the same protocol since they can instantiate the
same classes representing the events and the plans. For example, the event
Event_Attack_Commitment and the plan Plan_ev_Attack_commitment implement the
defense game. The architecture of our conversational agents is illustrated in Figure 3.

)

Dialogue games]

Event — Plan

Event — Plan

Ag; Ag,

N V/
Argumentation system Argumentation system
(Java + Logic programming) (Java + Logic programming)

V

Ontology
(Beliefset)

Knowledge
base (Beliefset)

4
Knowledge
base (Beliefset)

Fig. 3. The architecture of conversational agents

To start the entry game, an agent (initiator) chooses a goal that it tries to achieve.
This goal is to persuade its interlocutor that a given propositional formula is true. For
this reason, we use a particular event: BDI Event (Belief-Desire-Intention). BDI

190 J. Bentahar et al.

events model goal-directed behavior in agents, rather than plan-directed behavior.
What is important is the desired outcome, not the method chosen to achieve it. This
type of events allows an agent to pursue long term goals.

4.3 Example

In this section we present a simple example dialogue that illustrates some notions
presented in this paper.

Ag,: Newspapers can publish information I (p).

Ag,: I don’t agree with you.

Ag,: They can publish information I because it is not private (g), and any public
information can be published (r).

Ag,: Why is information I public?

Ag,: Because it concerns a Minister (s), and information concerning a Minister
are public (7).

Ag,: Information concerning a Minister is not necessarily public, because
information I is about the health of Minister (), and information about the health
remains private (v).

Ag;: I accept your argument.

This example was also studied in [2] in a context of strategical considerations for
argumentative agents. The letters on the left of the utterances are the propositional
formulas that represent the propositional contents. Agent Ag;’s KB contains: ([g,],
p), ([s,], @) and ([u], u). Agent Ag,’s KB contains: ([—t], —p), ([u, v], —f), ([1], u) and
([vl, v). The combination of the dialogue games that allows us to describe the
persuasion dialogue dynamics is as follows:

D a Acceptance Move
efense Game SC(Ag), Ago, F)
—> (SC(Ag), Ags.), SC(Ag), S
Ag, 1)), SC(Ag), Ag2, p)) b, Challenge Game a3
SC(Ag;, Ag2, @)

Entry Game
SC(Ag:, Aga, p)

Justification Game 94 5 Acceptance move
([SC(Ag;, Aga, 5), SC(Ag), Ag2 5)
SC(Ag;, Aga, D], Acceptance moves
SC(Ag), Ag2 @) ([SIL‘Ct(tZZ;,ngf 0, ﬁ, SC(Agz,_Agz, u), SC(Ag,, Ag,, v)
+ Final acceptance move
SC(Ag2, Agr, V)], SC(Ags, A)
SC(Ag;, Aga, 1) 8248170
Ag; creates SC(Ag;, Ag», p) to achieve the goal of persuading Ag; that p is true. Ag;
can create this commitment because it has an argument for p. Ag, refuses SC(Ag,,
Ag», p) because it has an argument against p. Thus, the entry game is played and the
persuasion dialogue is opened. Ag; defends SC(Ag;, Ag», p) by creating SC(Ag;, Ag,
q) and SC(Ag;, Ag, 7). Ag, accepts SC(Ag;, Ag,, r) because it has an argument for r
and challenges SC(Ag;, Ag», g) because it has no argument for g or against q. Ag;

A Computational Model for Conversation Policies for Agent Communication 191

plays a justification game to justify SC(Ag;, Ags, g) by creating SC(Ag;, Ag, s) and
SC(Ag;, Ags,). Ag, accepts the content of SC(Ag;, Agy, s) and attacks the content of
SC(Ag;, Agy, 1) by creating SC(Ag,, Ag;, u) and SC(Ag,, Ag;, v). Finally, Ag; plays
acceptance moves because it has an argument for u and it does not have arguments
against v and the dialogue terminates. Indeed, before accepting v, Ag; challenges it
and Ag, defends it by itself (i.e. ([SC(Ag,, Ag;, v), SC(Agy, Agy, v)])). Then, Ag;
accepts this argument because it considers Ag, trustworthy. This notion of agent trust
and its role as an acceptance criteria of arguments are detailed in [6]. Ag; updates its
KB by removing the attacked argument and including the new argument. Figure 4
illustrates the screen shot of this example generated by our prototype. In this figure
commitments are described only by their contents and the identifiers of the two agents
are the two first arguments of the exchanged communicative actions. The contents are
specified using a predicate language that the two agents share (the ontology).

el e e i
Fle Oplcrs

Erestsihel, g2, 50)0as beblishiMesspepers, Inforwstize 111

Mezuae |ByZ, Aple SCiCan_Filick(Kewapapers, Tefomeacion I))0 o0 Enzxy condificks ave gacisfisd

peCad el Agd, [3717nfcreation T30t _Frivater), $01& Fublic Infocwacice(Fublished))], 2C(Can Publish!Decapapers, DnCorcetion Ii))

Challengs|hg?, dgl, SCiInEacmstion TiMat Prieste| ||
.

AnceptIADE, Az, SCOA Punliz etereasion|Pilcsked))

Tuznifyihgl, Agl, [520CcecerniInfornacice I, Windersr)], 3Ci2ublic|d_Imforestion, Ninisesr||i], SC)Iaeorcetion_TiNbe_Priweteii)

dcceptihal, Aol, 3CiConcecsofereation I, dooiztezin

agl, [5Cencesnil I, Minister Eselthi, SC|Prowate(Infocaatass, Eealshi)], 52iRcklicrs Infomstice, Minister))))
.

hoomofiael, Ag2, SC|ConcorniIncorentioe I, Hinlacer Sealth| ||

CcrEptibgl, agl, STIPCieete(Infomatizn, Eeal<hi))

Rocsotlicl, Agd, 5710t Can_Rublish|Devspapess, Inforssticn i1

Mithiracihgl, age, 52jFcklic(a Infomsticn, Windscee)))|

lem(m. AQZ, 521Teforwation_I|Jac_Frimaze)))

Bitadpec(hgl, Agd, 320Cee Fublish|Medsmpepers, Infomeatice I1ii

The conflist sbcut SCiCan_Puil:shiWewspapecs, Infozmatim 1)) iz zesolved
.

i s

WE | 20 UOAGIT e

il
W"ﬁé'@ww“ 160 e | anc pewapnnsz | aeo cenoheliny

Fig. 4. The example screen shot

192 J. Bentahar et al.

5 Related Work

In this section, we compare our protocol with some proposals that have been put
forward in two domains: dialogue modeling and commitment based protocols.

1- Dialogue modeling. In [1] and [22] Amgoud, Parsons and their colleagues studied
argumentation-based dialogues. They proposed a set of atomic protocols which can be
combined. These protocols are described as a set of dialogue moves using Walton and
Krabbe’s classification and formal dialectics. In these protocols, agents can argue
about the truth of propositions. Agents can communicate both propositional
statements and arguments about these statements. These protocols have the advantage
of taking into account the capacity of agents to reason as well as their attitudes
(confident, careful, etc.). In addition, Prakken [23] proposed a framework for
protocols for dynamic disputes, i.e., disputes in which the available information can
change during the conversation. This framework is based on a logic of defeasible
argumentation and is formulated for dialectical proof theories. Soundness and
completeness of these protocols have also been studied. In the same direction, Brewka
[71 developed a formal model for argumentation processes that combines
nonmonotonic logic with protocols for dispute. Brewka pays more attention to the
speech act aspects of disputes and he formalizes dispositional protocols in situation
calculus. Such a logical formalization of protocols allows him to define protocols in
which the legality of a move can be disputed. Semantically, Amgoud, Parsons,
Prakken and Brewkas’ approaches use a defeasible logic. Therefore, it is difficult, if
not impossible, to formally verify the proposed protocols.

There are many differences between our protocol and the protocols proposed in the
domain of dialogue modeling: 1. Our protocol uses not only an argumentative
approach, but also a public one. Locutions are formalized not as agents’ private
attitudes (beliefs, intentions, etc.), but as social commitments. In opposition of private
mental attitudes, social commitments can be verified. 2. Our protocol is based on a
combination of dialogue games instead of simple dialogue moves. Using our dialogue
game specifications enables us to specify the entry and the exit conditions more
clearly. In addition, computationally speaking, dialogue games provide a good
balance between large protocols that are very rigid and atomic protocols that are very
detailed. 3. From a theoretical point of view, Amgoud, Parsons, Prakken and
Brewkas’ protocols use moves from formal dialectics, whereas our protocol uses
actions that agents apply on commitments. These actions capture the speech acts that
agents perform when conversing (see Definition 1). The advantage of using these
actions is that they enable us to better represent the persuasion dynamics considering
that their semantics is defined in an unambiguous way in a temporal and dynamic
logic [5]. Specifying protocols in this logic allows us to formally verify these
protocols using model checking techniques. 4. Amgoud, Parsons and Prakkens’
protocols use only three moves: assertion, acceptance and challenge, whereas our
protocol uses not only creation, acceptance, refusal and challenge actions, but also
attack and defense actions in an explicit way. These argumentation relations allow us
to directly illustrate the concept of dispute in this type of protocols. 5. Amgoud,
Parsons, Prakken and Brewka use an acceptance criterion directly related to the
argumentation system, whereas we use an acceptance criteria for conversational

A Computational Model for Conversation Policies for Agent Communication 193

agents (supports of arguments and trustworthiness). This makes it possible to decrease
the computational complexity of the protocol for agent communication.

2- Commitment-based protocols. Yolum and Singh [28] developed an approach for
specifying protocols in which actions’ content is captured through agents’
commitments. They provide operations and reasoning rules to capture the evolution of
commitments. In a similar way, Fornara and Colombetti [17] proposed a method to
define interaction protocols. This method is based on the specification of an
interaction diagram (ID) specifying which actions can be performed under given
conditions. These approaches allow them to represent the interaction dynamics
through the allowed operations. Our protocol is comparable to these protocols
because it is also based on commitments. However, it is different in the following
respects. The choice of the various operations is explicitly dealt with in our protocol
by using argumentation and trustworthiness. In commitment-based protocols, there is
no indication about the combination of different protocols. However, this notion is
essential in our protocol using dialogue games. Unlike commitment-based protocols,
our protocol plays the role of the dialectical proof theory of an argumentation system.
This enables us to represent different dialogue types as studied in the philosophy of
language. Finally, we provide a termination proof of our protocol whereas this
property is not yet studied in classical commitment-based protocols.

6 Conclusion and Future Work

The contribution of this paper is the proposition of a logical language for specifying
persuasion protocols between agents using an approach based on commitments and
arguments. This language has the advantage of expressing the public elements and the
reasoning process that allows agents to choose an action among several possible
actions. Because our protocol is defined as a set of conversation policies, this protocol
has the characteristic to be more flexible than the traditional protocols such as those
used in FIPA-ACL. This flexibility results from the fact that these policies can be
combined to produce complete and more complex protocols. We formalized these
conversation policies as a set of dialogue games, and we described the persuasion
dynamics by the combination of five dialogue games. Another contribution of this
paper is the tableau-based termination proof of the protocol. We also described the
implementation of this protocol. Finally, we presented an example to illustrate the
persuasion dynamics by the combination of different dialogue games.

As an extension of this work, we intend to specify other protocols according to
Walton and Krabbe’s classification [27] using the same framework. Another
interesting direction for future work is verifying these protocols using model checking
techniques. The method we are investigating is an automata theoretic approach based
on a tableau method [10]. This method can be used to verify the temporal and
dynamic aspects of our protocol. Finally, we intend to extend our implementation
using ideas from the agent programming language 3APL, namely the concept of
cognitive agents. An important characteristic of this language that is interesting for us
is its dynamic logic semantics [26] because our protocol is based on an action theory
and the semantics of our approach is also based on dynamic logic [5].

194 J. Bentahar et al.

Acknowledgements. We’d like to deeply thank the three anonymous reviewers for
their valuable comments and suggestions. We’d also like to thank Rance Cleaveland
and Girish Bhat for their interesting explanations on the tableau method.

References

1. Amgoud, L., Maudet, N., and Parsons, S. Modelling dialogues using argumentation. In
Proc. of 4th Int. Conf. on Multi Agent Systems (2000) 31-38.

2. Amgoud, L., and Maudet, N. Strategical considerations for argumentative agents. In Proc.
of 10th Int. Workshop on Non-Monotonic Reasoning (2002) 409-417.

3. Baldoni, M., Baroglio, C., Martelli, A., Patti, V., Schifanella, C. Verifying protocol
conformance for logic-based communicating agents. In Proc. of 5" Int. Workshop on
Computational Logic in Multi-Agent Systems (2004) 82-97.

4. Bentahar, J., Moulin, B., and Chaib-draa, B. Commitment and argument network: a new
formalism for agent communication. In [13] (2004) 146-165.

5. Bentahar, J., Moulin, B., Meyer, J-J. Ch., and Chaib-draa, B. A logical model for
commitment and argument network for agent communication (extended abstract). In 3™
Int. J. Conf. on Autonomous Agents and Multi-Agent Systems AAMAS (2004) 792-799.

6. Bentahar, J., Moulin, B., and Chaib-draa, B. Specifying and implementing a persuasion
dialogue game using commitment and argument network. In I. Rahwan, P. Moraitis and
C. Reed (Eds.), Argumentation in Multi-Agent Systems, LNAI 3366, Springer, (2005). (in
press).

7. Brewka, G. Dynamic argument systems: A formal model of argumentation processes
based on situation calculus. Journal of Logic and Computation, 11(2) (2001) 257-282.

8. Castelfranchi, C. Commitments: from individual intentions to groups and organizations. In
Proc. of Int. Conf. on Multi Agent Systems (1995) 41-48.

9. Chaib-draa, B., and Dignum, F. Trends in agent communication languages. In
Computational Intelligence, (18)2 (2002) 89-101.

10. Cleaveland, R. Tableau-based model checking in the propositional mu-calculus. In Acta
Informatica, 27(8) (1990) 725-747.

11. Colombetti, M. A commitment-based approach to agent speech acts and conversations. In
Proc. of Int. Autonomous Agent Workshop on Conversational Policies (2000) 21-29.

12. Dastani, M., Hulstijn, J., and der Torre, L.V. Negotiation protocols and dialogue games. In
Proc. of Belgium/Dutch Al Conference (2000) 13-20.

13. Dignum, F. (Ed.). Advances in Agent Communication. Int. Workshop on Agent
Communication Languages. LNAI 2922, Springer, (2004).

14. Dignum, F., and Greaves, M. (Eds.). Issues in agent communication. LNAI 1916, Springer
(2000).

15. Elvang-Goransson, M., Fox, J., and Krause, P. Dialectic reasoning with inconsistent
information. In Proc. of 9™ Conf. on Uncertainty in Artificial Intelligence (1993) 114-121.

16. Endriss, U., Maudet, N., Sadri, F., and Toni, F. Logic_based agent communication
protocols. In [13] (2004) 91-107.

17. Fornara, N. and Colombetti, M. Protocol specification using a commitment based ACL. In
[13] (2004) 108-127.

18. Greaves, M., Holmback, H., and Bradshaw, J. What is a conversation policy? In [14]
(2000) 118-131.

19. Herrestad, H. and Krogh, C. Obligations directed from bearers to counterparties. In Proc.
of 5th Int. Conf. on Artificial Intelligence and Law (1995) 210-218.

20.

21.

22.

23.

24.

25.
26.

217.

28.

A Computational Model for Conversation Policies for Agent Communication 195

Maudet, N., and Chaib-draa, B. Commitment-based and dialogue-game based protocols,
new trends in agent communication languages. In Knowledge Engineering Review, 17(2),
Cambridge University Press (2002) 157-179.

McBurney, P., and Parsons, S. Games that agents play: A formal framework for dialogues
between autonomous agents. In Journal of Logic, Language, and Information, 11(3) (2002)
1-22.

Parsons, S., Wooldridge, M., and Amgoud, L. On the outcomes of formal inter-agent
dialogues. In Proc. of 2™ Int. J. Conf. on Autonomous Agents and Multi-Agent Systems
(2003) 616-623.

Prakken, H. Relating protocols for dynamic dispute with logics for defeasible
argumentation. In Synthese (127) (2001) 187-219.

Singh, M.P. A social semantics for agent communication language. In [14] (2000) 31-45.
The Agent Oriented Software Group. Jack 4.1. 2004. www.agent-software.com/

van Riemsdijk, M.B., de Boer, F.S., and Meyer, J-J. Ch. Dynamic logic for plan revision
in intelligent agents. In Proc. of 5™ Int. Workshop on Computational Logic in Multi-Agent
Systems (2004) 196-211.

Walton, D.N., and Krabbe, E.C.W. Commitment in dialogue: basic concepts of
interpersonal reasoning. State University of New York Press, NY (1995).

Yolum, P. and Singh, M.P. Flexible protocol specification and execution: applying event
calculus planning using commitments. In Proc. of 1st Int. J. Conf. on Autonomous Agents
and Multi-Agent Systems (2002) 527-534.

1

Mulii-agent systems (MASs) often conp pse hete rogeneous comp onents, diffe ent
1n the way they 1ep resent knowledge about the word and about otheragents, as
well as 1n the mechamsms used for reas oning about 15. Notwithstanding hete ro-
geneity, agents must cogp eate, to execute a comm on task or comp ete forshared
esources; 1nkergp eration 13, nognally, raled by a set of shayed interaction pro-
tocols. The design and mp lementation of 1nteractionp rotocols are crucial steps
1n the develgpment of a MAS. Following the develgpment p rocess, descpbed 1n
[21], for interaction p robocol engineenng, swo different kinds of test are to be
executed. The fist corsists 1n Venfying the corsistency of an abstract protocol

J.

Verifying Protocol Conformance for
Logic-Based Communicating Agents*

Matteo Baldoni, Cpastina Barogho, Albeo Maytell,
Viviana Patt1, and Claudio Schifanella

Dipartimento di Informatica — Universita degli Studi di Torino,
C.so Svizzera, 185 — 1-10149 Torino (Italy)
{baldoni,baroglio,mrt,patti,schi}@di.unito.it

Abstract. Communication plays a fundamental role in multi-agents
systems. One of the main issues in the design of agent interaction pro-
tocols is the verification that a given protocol implementation is “con-
formant” w.r.t. the abstract specification of it. In this work we tackle
those aspects of the conformance verification issue, that regard the de-
pendence/independence of conformance from the agent private state in
the case of logic, individual agents, set in a multi-agent framework. We do
this by working on a specific agent programming language, DyLOG, and
by focussing on interaction protocol specifications described by AUML
sequence diagrams. By showing how AUML sequence diagrams can be
translated into regular grammars and, then, by interpreting the problem
of conformance as a problem of language inclusion, we describe a method
for automatically verifying a form of “structural” conformance; such a
process is shown to be decidable and an upper bound of its complexity
is given. We also give a set of properties that describes the influence of
the agent private information on the conformance of its communication
policies to protocol specifications.

Introduction

* This research is partially supported by MIUR Cofin 2003 “Logic-based development
and verification of multi-agent systems (MASSiVE)” national project and by the
European Commission and by the Swiss Federal Office for Education and Science
within the 6th Framework Programme project REWERSE number 506779.

Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 196-212, 2005.

(© Springer-Verlag Berlin Heidelberg 2005

Verifying Protocol Conformance for Logic-Based Communicating Agents 197

definition w.r.%. the opginal requirements, depved from the analysis phase, that
1t should embody. This venfication, often called validation test, 1s typically done
by mears of model-checking techm®ues. A diffeient p roblem 18 the one that we
face 1n this work, which amounts to Venfy if a given implementation, which s
an agent 1nteraction p olicy, respects a given abstract protocol definition. This
p roblem 18 known as conformance testing. Moreover, since the specific mmple-
mentasiors’ nomnally use the agent’s p pvate infopmasion (the agent’s “stateé),
e.g. for deciding which utterances to agiculate, one fugher Question that apses
15: 1o which extent does the agent 1nternal state in''uence the confoinance of
an mplementation o a g1ven p robocol sp ecification? Indeed, depending on the
wesult of sests on the agent’s internal state, different executiors could occuy, only
part of them being corect w.r.t. the specificatiors. Meely 1n the case 1n which
the “styuctue of the convepation p olicy 15 such that 1t 13 bound $o p roduce
correct convesatiors, confofmance 15 not 1intuenced at all by the agent’s 1ntenal
state (we will discuss this 1ssue 1n Section 3).

Inthis work we tackle thep yoblem of confoymance vepfication for $wosp ecific
languages: we use Agent UML (AUML forshog, fist specified 1n [27]) as the
1nte ackion p robocol sp ecification language and DyLOG [3,5] as the conve sation
p olicy mplememtasion language. In the hteatue one can, actually, find many
fomnal techm®ues forp rotocol sp ecification. A non-exhaustive hist includes fimte
state automasa [6,24], pet g nets [23,11], temp oral logic [15, 16] and UML-based
languages. Allthesep rop sals aecurensly beingstudied and nodefimtivestandayd
emeyged yet. The reason for chosing AUML 15 that, despite 18s yet incomplete
fommal semantics (a p rgp osal for a semantics based onpetn nets can be found
1n [10]), this language beas sgme jelevant advantages: 18 15 based on the wide-
sp read and well-known UML standad, 1t 18 intuitive and easy tolearn, thee are
grap hical editos for the generation of code, and AUML se®uence diagams have
been adgted by FIPA 1o 1ep reSent agent 1interaction p robocols. On the other
hand, DyLOG 15 a logic language for p rogramming agents, based on reasoning
about actiors and change 1n am odal framewotk, that allows the inclusion of aset
of convesationp olicies, 1n the sp ecification of an agent. The language jefess o a
mentalistic app roach, whee speech acts aje 1ep 1esented as atomic actiors with
p recondisiors and effects onthe executor’'s mensalstase. It allows thesp ecification
of individual agents, situated 1n a multi-agent context, each having a pesonal
view of the wordd. The use of a declajative language 15 help ful because 1% allows
the p roof of praperties of the specific implementation 1n a st ughtforwad way.
Inpagiculay, a language that explicitly rep resents and uses the agent 1nternal
state, 15 useful forp roving to which extent ce gainp rgp ef1es depend on the agent
mental state or on the semantics of the sp eech acts. Forimstance, 1n our work we
perfomn hyp othetical jeasomng about the effects of convesatiors on the agens
mental state, 1n order to find convepationplars which arep roved to resp ect the
mplemented p rotocols, achieving at thesame times ome desiyed goal. The DyLOG
language 15 bﬂeﬂy 1% roduced 1n Section 2, fora thorough descypion of 16 see [5].

! In Java, in a logic language, etc.

198 M. Baldoni et al.

Oury goal for this work 18, then, to study under which conditiors a DyLOG
mp lementation can be declajed as being confomant $o an AUML sp ecification.
To this amn, we will 1t yoduce differents levels of abstiaction w.rt. the agent
mental state by defimng thee degiees of conformance (agent conformance, agent
strong conformance, and protocol conformance). We will descgbe their relations
and, by 1ntep reting the p roblem of confornance Vepnfication as a p roblem of
inclusion of a contexs-free language (CFL) 1nto a regular language, we will show
a method for automatically Vejfying the strongest degree of confommance; an
upper bound to 188 complexity 18 also given. When this kind of confornance
holds, the mplemented p olicy respects the sp ecification whatever the ational
effects of the speech acts are, whatever the agent mental state 1s.

As a last observation about AUML, some authos, who work on p rotocol
validation, cptict e the choice of this fopmalsm because 1ts lack of a fomal
semantics makes 18 diffcult o vahdate the designed p rotocols w.r.t. the ong-
1nal sp ecificatiors. They ako cpticl e the choce of a mensalistic app roach (a
la FIPA) because at the level of p rotocol vahdasion shis app roach has shown
clevant ﬁaws. The dissatisfaction to the mentalstic app roach 18 mstly due to
the difficulty of venfying that an agent acts according to a commonly agreed
semantics, because 1% 15 not p #sible 1o have access to the agents’ p pvate men-
tal state [30], a p roblem known as semantics verification. Some authop have
prp sed a social approach to agent conmumication [29], where conmumcative
actiors affect the “social staté of the system, ather than the 1mternal states
of the agents. The social state ecords the social facts, like the permissions and
the commitments of the agents, which ae created and modified along the 1n-
teraction. The social app roach overcones the semantics vepficationp roblem by
exploiting a set of established commitments between the agents, that are stoed
aspart of the MAS social state. In this framework 1t 18 p ssible to fognally p rove
the correctness of public 1nteactionp robocols with jespect to the sp ecificasiors
outcoming from the analysis phases; such p roof can be obtained, for1rstance, by
mears of model checking techm®ues [22,25, 28,30, 18, 7] (but not only, e.g., [9]).

Neveytheless, AUML 15 being used, more and more often, in MAS develgp-
ment because 1t 13 intwitive for designes that have a background in UML and
1n the object-opented app roach, and for this eason 1t has an appeal for the de-
ployment of agent systems 1n the industyy wodd. Mojeover, when develgping the
single agents, besides Vejfying that the agent yespects the social commitments,
1t 15 mp ofant tostudy p rgp edies of their mplementations and, inpagicular, to
unde ptand 1f and to which extent such p rgp eties depend on the agent’s 1nte rnal
state (1n the case of commumnication, on the semantics of the speech acts).

2 Specification of Communication in DyLOG

DyLOG [5] 1 a high-level logic p rogramming language for modeling rational
agents, based up on a modal logic of actiors and mental atéitudes whe e modal-
1t1es are wsed for rep resenting actiors as well as beliefs that are 1n the agent’s
mental state. It accounts both foratomic and complex actiors, orp rocedures, for

Verifying Protocol Conformance for Logic-Based Communicating Agents 199

sp ecifying the agent behavior. A DyLOG agent can be p rovided with a communi-
cation kit that sp ecifies 18s conmumcative behavior [3], defined 1n tems of 1nte
action p rotocols, 1.e. convVepation p olicies that build on FIPA-like speech acts.
The communication theory 13 a homogeneous comp onent of the general agent
theory; 1n pagiculary, both the convesational p olicies, that guide the agent’s
conmumncative behavioy, and the otherp ohcies, defimng the agent’s behavior,
are 1¢p resented by p rocedure defimtions (rep yesented by aziom schema). DyLOG
agents can reason about theiy conmunicasive behavior arsswening to quepes hike
“g1ven ap rotocol and aset of desideata, 15 theye a conve sation, that jesp ects the
p rotocol, which alsosatisfies the desiyed conditiors on the final mental stase? .

2.1 The DyLOG Language in Brief

In DyLOG atomic actiors are etther wodd actiors, affecting the world, ormental
act1or8, 1.e. sersing or canmumnicatlVe actiors which only affect the agent behefs.
The set of atomic actiors corsists of the set A of the wodd actiors, the set C of
communicatiVe acts, and the set S of sersing actiors. For each atomic action a
and agent ag; we 1t roduce the modalities [a®9] and (a?9%). [a®9]a mears that
a holds after every execution of action a by agent ag;; (a®¥)a mears that there
18 ap ossible execusion of a (by ag;) after which o holds. We use the m odahty O
to denote laws, 1.e. fogmulas that hold always (after every actionse®uence). Our
fopnah ation of complex actiors daws comsiderably from dynamic logic for the
defimition of action geratos like seuence, test and non-deteminstic choce.
However, differently than [26], we refertoa Prolog-likeparadigm: p rocedures ae
defined by mears of (p sibly jecusive) Prolog-like clauses. For each p roceduye
p, the language contairs als o the umveal and existential m odahties [p] and (p).
The mental state of an agent 15 descybed by a corsistent set of belief formulas
(we call 1t belief state). We use the modal gerator B tomodel the behefs of
agent ag;. The modahty M 15 defined as the dual of B9 and mears that ag;
corsides o p ossible. A mental state contairs what ag; (dis)beheves about the
wordd and about the other agents (nested behefs are needed for reasomng on
how other agents beliefs can be affected by commumcative actioms). Fommally
1t 15 a complete and corsistent set of yank 1 and 2 behef ﬂuents, whee a belief
fluent F' 15 a belef fopnula B9 L or1ts negation. L denotes a belief argument,
re. a fluent literal | (f or —f) or a behef fuens of ank 1 (B or —-Bl).
All the m odalities of the language aye nommal; O 13 ellexive and tyamsit1ve,
14 1nteaction with action modahties 15 yuled by Op D [ai]p. The epistemic
m odahity B 1s seqpal, tarsitive and euchidean. A non-m onotonic s olution to the
%elmstency p roblem 15 g1ven, which corsists 1n maximi 1ng assumpiions about
uents afterthe execution of actionse®uences, based on an abductive framewok.

2.2 The Communication Kit in Brief

The behavior of an agent ag; 18 sp ecified by a domain descpp $10n, which 1ncludes,
besides a sp ecificasion of the agent belief state: (1) action and precondition laws
for descpibing the atomic wordd actiors 1n temms of theirp jeconditiors and theiy

200 M. Baldoni et al.

affects on the agent’s mental state, (1) sensing azioms for descubing atomic
sersing actiors, (1) procedure axioms for descibing complex behavios, (1v) a
communication kit that descpibes the agent communicative behavior by mears
of fugheraxioms and laws of the kind mentioned above. In fact a communication
kit comssts of (17) aset of action and p recondisiors laws modeling a p redefined
set of p pmit1ve sp eech acts the agent canperfomm/ecogm e (11°) aset of sersing
axigns for defimng sp ecial sersing actiors for getting new 1nfopmation by ex-
ternal conmunicatiors (11') a set of p rocedure axioms forsp ecifying inte racéion
p rotocols, which can be seen as a ibpasy of convesation p olicies the agent can
follow when engaging a convepgatiors with othes.

Interaction Protocols are 1ep resented as p roceduyes that buld vp on 1ndivid-
ual speech acts and specify convesation p olicies for guiding the agent conmu-
nicat1ve behavior. They are exp yessed by aziom schema of fopn:

(Po) C (p1;p2;-- i Pm)¢ (1)

po 18 aprocedure name and the p;’s (i = 1,...,m) are eitherp rocedue names,
atomic actio18, ortest actiors (actiors of the fogn F's?, where F's 15 a behef ﬂuent
conjunciion); inswit1vely, the ? gerator coresp onds o checking the value of a

uent conjunciion in the curent state while the ; 15 the seuencing @ erator of
dy namic logic. Since each agent has asubjectivep ecep t1on of the communication
with other agents, given a p rotocol specification we expect to have as many
p rocedural yep yesentatiors as the p ssible roles 1n the conve sation.

The axign schema used to define p rocedures have the fogn of inclusion az-
ioms, which were the subject of p 1evious work [4, 2], 1n which the class of mulii-
m odal logics, chajacten ed by axioms that have the geneyal fomn (s1) ... (sm)¢ C
(t1) ... (tn)p, where (s;) and (t;) are modal geratos, has been analy ed. These
axioms have interesting computational p rgp erdies because they can be comsid-
ered as rewriting rules. In [14] shis kind of axigns 15 wsed for defimng grammar
logics and s omne relatiors between fopmal languages and such logics aye analy ed.

A speech act ¢ 1n C has forn speech_act(ags, agy, 1), whee ags (Sender) and
ag, (rece1ver) are agents and [18 the message content. Effects and p recondisiors
are modeled by a set of effect and p recondition laws. In pagicular, effects on
ag;’s behef state of an action ¢ aje exp essed by action laws of fopm:

O(B9 Ly A... AB L, > [c"9]B9 L) 2)
O(MOS Ly A ... AMO Ly, S [99] M L) (3)

Law (2) mears that, after any seluence of actiors (O), 1f she set of Huent hteals
Ly A... A Ly (1ep resenting the p reconditiors of the action ¢) 1 believed by ag;
then, after the execution of ¢, Ly (the effect of ¢) 15 also beheved by ag;. Notice
that our 1ep resemtation of speech acts models only the dynamics of the mental
state of the agent the we are mp lementing. Executing a sp eech act may cause an
agent o have new beliefs (1n 1% mental state), that ae assumptiors on what the
othes believe but the agent cannot be suje that the othes actually have thse
beliefs. Law (3) states that when the p jeconditiors of ¢ aye unknown to ag;, after
the execution of ¢, 1t will corsider unknown also 18s effects. Precondition laws

Verifying Protocol Conformance for Logic-Based Communicating Agents 201

specify mental conditiors that make an action 1n C executable 1n a state. They
have fomm:
OB Ly A...\B* L, D {(c")T) (4)

ag; can execute ¢ when 18 p recondition flyents are 1n ag;’s belef state.

Get message actions are fopnal ed as sersing actiors, 1.e. knowledge p ro-
ducing actiors whese outcome cannot be p redicted before the execution. In fact,
from the peppeciive of the individual agent, expecting a message corresp onds
10 ®uery for an external 1put, thus 1t 15 natugal to think of 1t as a special case
of sersing. A get_message action 18 defined by the inclusion axiom schema:

[get-message(ag;, agj,)]e = | U speech_act(ag;, agi, D)l¢ (5)

speech_act€Cget_message

Inbuwitively, Cget message 13 @ finite set of speech acts, which ae all the p ssible
conmumnicatiors that ag; could expect from ag; 1n the context of a given con-
vepation. Hence, the infopnation that can be obtained 15 calculated by looking
at the effects of the speech acts 1n Cget_message ON ag;’s mensal siate.

As a finale conmens, 1n the ¢ eational intep evation of the language, (1) 1
handled as a ewpting rale. From a declapative semantics p oint of View, the rule
15 an axion schema of the logic, hence 1ts foqm. Intuitively, the set of fopmulas of
kind (2), (3) and (4) define the theory, while these of foan (1) and (5) define the
chapactepstics of the mulii-m odal logic 1n which the fopmulas are intep reted.

Ezxample 1. The following p roceduye axions yep yeSent an imp lementation of the
p rotocol 1n Fig. 1 as the convepationp ohcy that the customeragent (cus) must
use forinteacting with thesevicep rovider (sp). Axioms mp lementing the Queyy
subp rotocol follow. Since the AUML p rotocol contairs two roles, the customer
and the p rovider, the mplementation must contain two views as well bus for
bievity we rep oré only the View of the customer (get_cinema_tickets). Smilady
for the subp rotocol for €ueying infopnation: yes_no_query, ump lements the role
of the ®queper and yes_no_query; the one of the resp onde P,

(a) (get_cinema_ticket(cus, sp, movie))yp C
(ves_no_query,(cus, sp, available(movie));
B quailable(movie)?; get_info(cus, sp, cinema(c));
yes_no_query(cus, sp, pay_by(credit_card));
B pay by (credit_card)?; inform(cus, sp, cccnumber);
get_info(cus, sp, booked(movie)))p
(b) (get_cinema_ticket(cus, sp, movie))p C
(yes_no_query) (cus, sp, available(movie)); B***available(movie)? ;
get_info(cus, sp, cinema(c));
yes_no_query,(cus, sp, pay_-by(credit_card)); =B pay_by(credit_card)?)p

2 The subscripts next to the protocols names are a writing convention for representing
the role that the agent plays: @ stands for querier, I stands for informer, C' for
customer.

202 M. Baldoni et al.

(c) (get_cinema_ticket(cus, sp, movie))p C
(yes_no_query,(cus, sp, available(movie)); =B“**available(movie)?)¢
(d) [get-info(cus, sp, Fluent)]p = [inform(sp, cus, Fluent)]e

Protocal get_cinema_ticket, works as follows: agent cus begirs the 1nteaction.
Afier checking 1f the reftuested movie 1 available by the yes_no_queryg p roto-
col, 18 waits for an infopmation (get-info) from the p rovider (sp) about which
cinema shows 1t. Then, the p rovider asks for a payment by credit cad by us-
1ng the yes_no_query; p rotocol. If the amswer if p s1t1ve cus communicates the
credit cayd number and the confignation of the ticket booking 18 returned to 1%,
otherwise clause (b) 15 selected, ending the convesation. Clause (c) sackles the
case 1n which the movie 15 not available; clause (d) descpbes get_info, which 15 a
get_message action. In the following the get_answer and get_start defimtiors are
1stances of axiom schema (5): the aght hand side of get_answer 1ep esents all the
p ®sible arswes expected by cus from sp about Fluent, dupng a conVe gation
raled by yes_no_query,.

(e) (yes_no_queryq(cus, sp, Fluent))p C
(querylf(cus, sp, Fluent); get_answer(cus, sp, Fluent))y

(f) [get-answer(cus, sp, Fluent)]e = [inform(sp, cus, Fluent) U
inform(sp, cus, 7 Fluent) U refuselnform(sp, cus, Fluent)]p

(g) (yes-no_query;(cus, sp, Fluent))p C (get_start(cus, sp, Fluent);
Be¥s Fluent?; inform(cus, sp, Fluent))p

(h) (yes_no_query;(cus, sp, Fluent))p C (get_start(cus, sp, Fluent);
Be4s = Fluent?; inform(cus, sp, 7 Fluent))

(1) (yes_no_query;(cus, sp, Fluent))p C (get_start(cus, sp, Fluent);
U Fluent?; refuselnform(cus, sp, Fluent))p

(3) [get_start(cus, sp, Fluent)|p = [querylf(sp, cus, Fluent)|p

Given a set Ilc of action and precondibion laws defimng the agent ag;’s
p gmitive speech acts, a set Ilsge; of axioms for the reception of messages,
and a set Ilgp, of procedure axioms for specifying convesation p rotocols, we
denote by CKit®¢ the communication kit of an agent ag;, that 15 the tpple
(I, Hep, sget).-

A domain description (DD) for agent ag;, 15 a spple (IT, CKit®9 Sy), where
CKit* 18 ag;’s commumncation ki, Sy 13 the 1mtial set of ag;’s behef ﬂuents,
and IT 15 a suple (I14,Ils, [Ip), where IT4 15 the set of ag;’s wodd action and
p recondition laws, ITg 15 a set of axions for ag;’s sersing actiors, IIp a set of
axions that define the conplex non-conmumcative behavior of the agent.

From a DD with she speaficatiors of the 1mteraction p rosocols and of the
relevant speech acts, a planning act1vity can be tpggered by existential queries
of fom (p1){p2)...{pm)Fs, where each pr (kK = 1,...,m) may be an atonic
or complex action (a p gmitive speech act or an inteaction p robocol), execused
by our agent, or an external® speech act, that belongs to CKit®. In [3] we

3 By the word ezternal we denote a speech act in which our agent plays the role of
the receiver.

Verifying Protocol Conformance for Logic-Based Communicating Agents 203

p 1esented a goal-dijected p roof p rocedure for the language based on negation as
falluye (NAF) which allows @uery of fomm (p1)(p2) ... {(pm)Fs to be p roved from
a g1ven domain descpption and returs as apsweran actionse®uence. A @ueyy of
the fomn (p1;p2;...;pn)Fs, where p;, 1 < i < n (n>0), s etthera wordd action,
or a sersing actlon, or a p rocedue name, or a test, succeeds 1f 1t 18 p #sible to
execute pi,po,...,p, (1n the order) staiing from the curent state, in such a
way that Fs holds at the jesulting state. In general, we will need to establish 1f
a goal holds at a g1ven state. Hence, we will wpte:

Aty ...y am b (p1;p2; ... ;pn)Fs with amswer (w.a.) o

tomean that the Query (p1;pa;...;pn)Fs, 1.e. (p1){(p2) ... (pn)Fs, can be p roved
from the DD (II, CKit"?, Sy) at the stase aq,...,a,, with arswer o, whee o 18
an action se®uence aj,...,Qm, ... Gyn+r Which 1ep jesents the state esulting by
execusing pi, - - -, Py 10 the curent state aq, ..., a,. € denotes the 1mtial state.

3 Protocol Conformance

In AUML a protocol 15 specified by mears of sequence diagrams [27], which
m odel the interactiors among the pagicipants as message exchanges, arranged
1n time sequences. The Verical (smme) dimersionsp ecifies when a message 1s sens
(expected), the hop ontal dimersion exp esses the pagicpants and their roles.
The curent p rgp osal [17], enpnches the set of p sssible gpematos of the language;
particulady interesting 15 the p ossibility of 1ep resenting logps, calls to subp ro-
tocols, and exit p oints. Geneally sp eaking, g1ven a p rotocol mplementation 1%
would be nice to have amears forautomatically venfying 1ts conformance o the
desired AUML specification. The techm®ue that we follow corsists 1n surnming
this p roblem 1nto a p roblem of fopmal language inclusion. To this am, given a
seffuence diagram, we define a fopnal gramma which geneates a language, that
15 the set of all the convepatiors allowed by the diagyam 1tself. The algopthm
used to this pup e 1 descpbed 1n Section 3.1. On the other hand, given a
DyLOG mplementasion of ap rovocol, we define a language that 15 compared to
thep reviously obtained one: if the language obtained from the mplementation s
included 1n the one obtained from the se®uence diagam we conclude that a type
of conformance holds. We, actually, define thiee degrees of confommance (agent
conformance, agent strong conformance, and protocol conformance), chaacter
1 ed by different levels of abstaction fron the agent p nvate mensal state, which
corresp ond to different ways of ext jacting the language from the mp lementation.
These defimtiors allow us o define which paps of a p rotocol mplementasion
must it the specafication and to descpbe 1n a modulay way how the mplemen-
tation can be enpched with espect to the sp ecification, without comp yomising
the confoimance. Such an enjchment 15 mp orsant when using logic agents, that
supp oré S p histicated fomms of yeasoning.

204 M. Baldoni et al.

3.1 Turning an AUML Sequence Diagram into a Linear Grammar

In the following we show how 1t 15 p Bsible to tramslate an AUML se®uence
diagyam, as defined 1n [17], into a grammay. Using the notation of [20], a grammar
G s atule (V,T,P,S), where V 15 aset of vanables, T aset of tegninals, P of
p roduction rules, and S 18 thestaw symbol. By L(G) we will denote the language
genepated by grammar G, 1.e. the set of sentences in T* that are genepated
staing from S, by applying rules in P.

On the side of se®uence diagrams we focus on the gematos used tospecify
FIPA p rotocols, which aje: message, aléernative, log, exit, and reference to a
sub-p robocol (see tp of Fig. 1).

| |
diternative /‘ | |
|
m | e I \bop [cond] _J

I
[
r T |
|
I

-

Protocol name

:Customer :Service Provider

Q17 — inform(cus, sp, cconumber) Qs
Q18 — inform(sp, cus, booked(movie))(Q1g
Qo —r e

inform(booked(movie))

| yesi"”'”e"//, querylf(available(movie)) |
[“1
alternative /, |
| refuselnform(available(movie)) |
)E‘ I
- - - - - - -
e inform(-avaitable(movie)) ! Qo — querylf(cus, sp, available(movie)) Q1
X _] Q1 — Q2| Qu| Qs
| inform(available(movie)) | Q)2 — refuselnform(cus, sp, available(movie))Qs
r ! Qs —re
- nform(cinema(c)) : Q4 —> inform(sp, cus, ~available(movie)) Qs
< i Qs — ¢
yes o_auery I queryitipay by(c_cara)) ' Qs —> inform(sp, cus, available(movie)) Q7
! ! Q@7 — Qs
Hemative /l : Qs — inform(sp, eus, cinemale)) Qg
| refuselnform(pay_by(c_card) R Qo — querylf (sp, cus, pay_by(c_card)) Qo
X Qo — Qu | Qiz | Qs
Fe - - - - = 1 Q11 — refuselnform(cus, sp, pay_by(c_card))Qr2
I inform(~pay_by(c_card)) ! Quz — e
| ;_ ____________ _);(| Q13 — inform(cus, sp, ~pay_by(c_card))Q14
inform(pay_by(c_card)) o Ql4 —* £
; Q15 — inform(cus, sp, pay_by(c_card)) Qs
T Q16 — Q17
|
]
|

L
I
| inform(cc_number)
|
I
|

Fig.1. On top a set of AUML operators is shown. Below, on the left the sequence
diagram, representing the interaction protocol between a cinema booking service and
a customer, is reported with its corresponding production rules

Verifying Protocol Conformance for Logic-Based Communicating Agents 205

Algorithm 1 (Generating Gp,,,,,) The grammar corstruction 3 done 1n
the following way. We will denote by the vapable last the m st jecently created
vapable. Imtially T and P aje empty. Define the sta symbol as Qg, 1utiah e
last 0 Qo and V := {Qo}, then, we apply the sarslasion yules descubed by
cases hereafter, according to the se®uence given by the AUML diagam:

— g1Ven a message arrow, labeled by m, create a new Vapable Qpew, V :=V U
{Qnew}, T :=TU{m}, P:= PU{last — mQpew |, finally, set last := Qnew;

— given an exit operator, add to P a p yoduction last — ¢, last :=1 (unde-
fined);

— g1Ven an alternative gerator with n byanches, apply to each branch the
grammar corstfuckion algopthm, s o cbtaimng a grammay G = (V/, T}, P/, S!)
with lastg being the last vapable used 1m51de that branch. Let us assume
that V/Nn...NnV. NV =@ (1t 1 sufficient to ename all Vapables 1n the
V!’%s), then create a new Vapable Qpew. V := VUV U... UV U{Qnew},
T:=TUTjU... T, P:= PUPjU{last — S{}U...UP, U{last — S/ },
moreover P := P U {last, — Qnew} foreach i € [1,n] such that last] #.1,
and finally we set last t0 Qpew;

— g1Ven a loop, apply the grammar corst fuction algopthm to 18s body, so ob-
taming a grammay G = (V' 7', P, S’) with a value for last’. Let us as-
sume that V' NV = (), then create Quew, V = VUV U{Qnew}, T =
TUT', P :=PUP U{Qust — S',last — Qpew} if last’ #L then
P := PU/{last’ — last}, and last := Quew;

— @1Ven a subprotocol reference, apply the grammar constuction algopthm to
the called subp robocol, So obtaimng a grammay G' = (V/, T/, P',S’) with a
value for last’. Let us assume that V' NV = (), then increment new, create
Qnew, V.=V UV'U{Qnew}, T:=TUT', P:=PUP U{Qiast — S'}, 1f
last’ #1 then P := PU{last’ — Qpew}, and last := Qnew;

Proposition 1. The set of conversations allowed by an AUML sequence dia-
gram is a regular language.

Proof. The Algonthm 1p roduces a right linear grammars (Vanables app ear only
at the pgth end of p roductions), so the geneated language 15 regular [20].

By this tjarmslation we give 1o the set of convesatiors encoded by the se-
Yuence diagram a stpuctual semantics (although no semantics 15 given to the
single speech acts). The grammary could, then, be tyarslated 1nto a fimte-state
automaton, another fopnal tool often wsed to 1ep 1esent 1nteactionp rofocols, as
mentioned 1n the 1nt roduction. As a last obserVation, thep roduced grammarmay
contain redundancies and could be simp hified using standayd algopthms [20].

Corsider, as an example, the se®uence diagram 1n Fig. 1: 1t 1ep reSents an
1nteraction p robocal with two agent roles (Customer, cus, and Service Provider,
sp): the p robocol yales the 1nteraction of a cinema booking service with each of
185 customess, and will be used as a fanming example along the paper. Supp we,
now, to have a DyLOG mplementasion of the sp ecification given by the diagam.
The techm®ue that we apply for Venfying if 1t 15 confoymant (w.r.t. the defim-
t1018 g1ven 1n Section 3) to the specificatiors, inbwmively works as follows. If

206 M. Baldoni et al.

we canp rove that all the convesatiors p roduced by the mplementation belong
to the language genejated by the grammar 1nto which the sp ecification can be
tramslated (see Fig. 1), then the mplementation can be corsidered confoimans.

3.2 Three Degrees of Conformance

We have shown how AUML se®uence diagrams can be tjarslated into egular
gramma;s. By 1ntep reting the p roblem of confopnance as a p roblem of fopnal
language 1nclusion, we will descpbe a method for automasically venfying the
strongest of the thiee degiees of confoimance (p rotocol confoimance). The ver-
ification of p robocol confornance 18 shown to be decidable and an upper bound
of 1ts complexity 15 g1ven.

Definition 1 (Agent conformance). Let D = (II, CKit*,Sy) be a domain
description, payiog € CKit™ be an implementation of the interaction protocol
paumL defined by means of an AUML sequence diagram. Moreover, let us define
the set

X(So) = {o | (11, CKit"", Sp) I (payiog) T w. a. o}

We say that the agent described by means of D is confognant to the sequence
diagram payar if and only if

Z(SO) - L(GPAUML) (6)

In other words, the agent confogmance p rgp ey holds if we canp rove that eveyy
conVve pation, that 15 an 11s%ance of thep robocol mplemented 1n ourlanguage (an
execution $race of Payiog), 15 a legal convepation according to the grammar that
1€p resents the AUML se®uence diagram p 4¢7pr; $hat 18 tosay that conve sation
18 also generated by the grammar G,y -

The agent confoinance depends on the 1mtial state Sg. Different 1mtial states
can dete nine different p ssible conve satiors (execusion taces). One can define
a notion of agent conformance that 15 1ndep endent from the 1mtial state.

Definition 2 (Agent strong conformance). Let D = (II, CKit"?*, Sy) be a
domain description, let payiog € CKit™" be an implementation of the interaction
protocol paunr defined by means of an AUML sequence diagram. Moreover, let
us define the set

r=Jz)
S

where S ranges over all possible initial states. We say that the agent described
by means of D is strongly confoimant to the se®uence diagyam paypr if and
only if

E g L(GPAUML) (7)

The agent strong confoinance p rgperty holds if we can p rove that every con-
vepation for every p sible 1nitial state 15 a legal conve sation. It 15 obVigus by
defimition that agent strong conformance (7) mphes agent confoimance (6).

Verifying Protocol Conformance for Logic-Based Communicating Agents 207

Agent strong confoimance, diffejently than agent confonance, does not de-
pend on the 1mtial state bus 1t st1ll depends on the set of speech acts defined
1n CKit*%, In fact, an execution tace o 18 builé taking 1nto account test actiors
and the semantics of the speech acts (defined by executability p yecondision laws
and action laws).

A stronger notion of confoinance should e®uie that a DyLOG mplemen-
tation 15 confopnant to an AUML se®uence diagram independently from the
semantics of the speech acts. In other wodd, we would like to p rove a soi of
“stpucturdl confopmance of the mplemented p rovocol w.r.t. the coresp onding
AUML se®uence diagram. In order to do this, we define a fopmal grammay fyomn
the DyLOG mplementation of a convepationp robocol. In this p rocess, the par
ticular forn of axign, namely inclusion axiom, used to define p rofocol clauses
1 a DyLOG mplementation, cones §o help us.

Algorithm 2 (Generating Gy,,,,,) G1vena domain descpp s1on (17, CKit™", Sp)
and a convepasion p robocol Payieg € CKit" = (Ilc, Ilep, sget), we define the
gramimar Gpd'ylog = (T,V,P,S), whee:

— T 18 the set of all tepns that define the speech acts 1n Il¢;

— V 5 the set of all the tepns that define a convesation p robocol or a get
message action 1n Hep or Isget;

— P 1s theset of p roduction rules of the forn pg — pips ... p, where (po)e C
(p1;P2; - - ;Pn)p 18 anaxion that defines erthera convepationp rosocol (thas
belongs to Ilcp) ora get message action (that belongs to IIsger). Note that,
1n the latter case, we add a p roduction rule for each alternative speech act
10 Cget_message 5€€ (5), Moeover, the test actiors Fs? are not 1€p oved 1n the
p roduction rales;

— the stag symbol S 18 the symbol payiog-

Let us define L(Gp,,,.,) as the language geneated by mears of the grammar
G

Proposition 2. Given a domain description (IT, CKit"9,Sy) and a conversa-
tion protocol payiog € CKit™ = (¢, Iep, Hsger), L(G) is a context-free
language.

Pdylog *

Pdylog

Proof. The p rgp s1%10n follows from the fact that Gpdylog 1S5 a context-free gram-
mar (CFG)

Intwiively, the language L(Gyp,,,,,) 1€p resenss all the p ¢ssible se®uences of
speech acts (convepatiors) allowed by the DyLOG p robocal payioq 1ndep endently
from the evolution of the mental state of the agent. For example, clause (a) of
get_cinema_ticket p jesented 1n the p revVious section 15 1ep resented as follows:

get_cinema_ticket(cus, sp, movie) —
yes_no_queryq (cus, sp, available(movie))
get_info(cus, sp, cinema(c))
yes_no_query;(cus, sp, pay_by(credit_card))
inform(cus, sp, cc.number)
get_info(cus, sp, booked(movie))

208 M. Baldoni et al.

Definition 3 (Protocol conformance). Given a domain description DD =
(IT, CKit™, Sy), let payiog € CKit™" be an implementation of the interaction
protocol paynr defined by means of an AUML sequence diagram. We say that
Pdylog 15 conformant to the se®uence diagram payar if and only if

delng) g L(GPAUML) (8)

We then 1ntep et the vepfication of confopmance as a contaimment of fopnal
languages p roblem; inpagticular, that a CFL 15 included 1n a regular language.
By doing so, we Venfy the structumal matching of the mplementation to the
sp ecification.

L(G

Proposition 3. Protocol confoimance (8) implies agent strong confoinance
(7) and the latter implies agent confogmnance (6).

Proof. Tt 18 sufficien $op rove that X' C L(Gp,,,.,)- We give a skeich of p roof.
Actually, let us corsider the application of p roof rule (1) and (4) 1n the p roof of
(IT, CKit™", 8o) ps (Pdyiog) T W.a. o, 18 18 p oss1ble to build a depVation payiog =«
o where each depvationstep 15 detemined by selecting the p roduction rale that
15 obtained from the inclusion axiom of the the corresp onding rule (1) and (4)
that has been applied. This shows that o € L(G). The second part of the
p rap os1k1on tpvially denves fron defimtiors.

Pdylog

Proposition 4. Protocol conformance is decidable.

Proof. E®uation (8) 18 e®wivalent to L(Gp,,,.,)V L(Gp,y) = 0. Now, L(Gp,,..,)
15 a CFL while L(G)p,,,,,,.) 1 & regular language. Since the complement of a jeg-
ular language 1 still egulary, L(Gp,, .,) 8 a regular language. The 1nte section
of a CFL and a regularlanguage 15 a CFL. For CFLs, the emptyness 15 decidable
[20].

P rp os1810n 4 tells us that an algopthm for Venfying p rosocol confopmance ex-
ts. In [13, 8] ap roceduse to Venfy the combaimment p rgp ety of a CFL 1na regu-
larlanguage 18 g1ven, that takes O(|Pg ||Va [?) tme and O(|Pg

Va

Pdylog PAUML Pdylog ‘

2
PAUML |) Space.
Example 2. Let ws corsider the yes_no_query; DyLOG p roceduse, p iesented 1n
Section 2.2, clauses (g)-(3). In the case 1n which Fluent holds available(movie),
Algopnthm 2 p roduces the following grammar GYES—HO—querYuyzog:

yes_no_query (cus, sp, available(movie)) —
get_start(cus, sp, available(movie)) refuselnform(cus, sp, available(movie))
yes_no_query;(cus, sp, available(movie)) —
get_start(cus, sp, available(movie)
yes_no_query, (cus, sp, available(movie)
get_start(cus, sp, available(movie)) inform(cus, sp, ~available(movie))
get_start(cus, sp, available(movie)) —
querylf(cus, sp, available(movie))

)
)
) inform(cus, sp, available(movie))
) —
)

Verifying Protocol Conformance for Logic-Based Communicating Agents 209

It 18 easy tosee that the language p roduced by 1t 1 the following and that 1%
contairs thee p wsible convepatiors:

L(Ge sy) = |
querylf(cus, sp, available(movie))refuselnform(cus, sp, available(movie)),
querylf(cus, sp, available(movie))inform(cus, sp, available(movie)),
querylf(cus, sp, available(movie))inform(cus, sp, mavailable(movie)) }

The grammar Gyes no_query; ,,,,,» OPtained starting from the AUML sp ecification
of thep rotocol, 8 smilartothe oneshowninFig. 1, p roductiorns from @1 through
Q7, where Q7 p roduces ¢ 1stead of Qg. The language L(GYES—HO—queryIAUML) con-
tairs the same convesatiors of L(GYeS—HO—queWrdwg)’ therefore the protocol con-
formance tpvially holds. This 15 a styuctujal confopmance, 1n the serse that no
information about the agent p i vate state 15 taken into account nor the semantics
of the speech acts 1s.

Now, the speech acts might have different semantics (diffe ent p reconditiors
or effects); for imstance, we can magine two inform mplementatiors, the fist
can be executed when the infoyner knows a cepain fact, the other when 1t
knows a fact and 1t believes that the ®ueper does not know 1. Dep ending on 1ts
semantics, an in form act might ormight not be executed 1n a g1ven agent mental
state. Thus, genejally, the interaction dynamics of the speech act semantics
and the agent behef states might enable or disable convepatiors even when
using the same agent p olicy. Nerverheless, since p rotocol confopnance holds,
by Prg s1t1on 3 we can state that the obtained convesations will always be
legal w..%. the AUML sp ecification; the p gvase infoqmation of the agent and the
semantics of thesp eech acts will, at m %, reduce theset of p ssible conve sations
but they will neVer 1nt roduce new, uncorrect se®uences.

4 Conclusions and Related Work

In this work we face the p roblem of Vepfying if the mplementation of an inter
actionp robocol as an 1nternal p olicy of a logic-based agent 15 conformant to the
p rotocol abstyact sp ecification, 1n the sp ecial case of DyLOG agents mp lemenging
AUML sp ecificatiors. We have taken advamtage from the logical 1ep resentation
of protocols 1n DyLOG as inclusion axioms, by intep reting the confopnance
p roblem as a p roblem of language 1nclusion.

Venfying the confopmance of p rofocol mp lementatiors 18 a cyucial p roblem
1in an AOSE pesspective, that can be corsidered as apart of the p rocess of engi-
neeqing 1mteractionp robocols sketched 1n [21]. In this pespective the techm®ues
discussed along ourpaper, actually, suggest a staughtforwad methodology for
dijectly mplementing p rosocols 1n DyLOG so that conformance to the AUML
specification s yesp ected. In fack, we can build ouyimplementationstaging from
the grammay Gp,,,,, .., and applying the inve se of the p rocess that we descubed
forpassing from a DyLOG mplemensation to the grammay Gpdylog. In this way
we can obtain a skeleton of a DyLOG mplementation of payar that 15 $0 be

210 M. Baldoni et al.

completed by adding the desiyed ontology for the speech acts and customi ed
with tests. Such an mplementatsion t avially satisfies p robocol confopmance and,
then, all the other degrees of confognance.

The p roblem of checking the agent confopnance to a p rotocol 1n a logical
framework has been faced also 1n [12]. In [12] agent conmumcation stateges
and p rotocol sp ecification are both 1ep resented by mears of sess of if-then rules
1n a logic-based language, which jelies on abductive logic p rogramming. A notion
of weak confopmance 15 1nt roduced, which allows to check if the p gssible m oves
that an agent canmake, according $0 a g1Ven communication stategy, are legal
w.rt. the p rotocal specification. The conformance test 13 done by dis regarding
any condition related to the agent p nvate knowledge, which 15 not comsidered
as jelevant 1n order to decide weak confopnance. On this jespect, our notion
of conformance 15 smilay to the notion of agent weak confopmance descpbed
above. HoweVer, our app roach allows to tackle a broader class of p rotocols: we
are not restycted to p rotocols that se®uentially alternate the dialogue m oves
of the agents. Fughem ore, while 1n [12] confogmnance avods to deal with the
dialogue history, our notion of confopnance takes 1nto account the whole context
of the convepation, due to the fact that 1t corsides se®uences of dialogue acts.
This can be done thanks 1o the m odal logic framewok, which allows to natually
deal with contexts.

Moreover, our framework allows us to give a finer nobion of confommance,
for which we can distingwsh diffejent degiees of abstaction with respect to the
agent p gVate mental state. This allows us to decide which paps of a p rotocol
mp lementation must fit the p robocol sp ecification and to descpabe 1n a modu-
lar way how the p robocol mplementation can be enjched with espect to the
p rotocol sp ecificasion, without comp romising the confommance. Such an enpch-
ment 13 1p ofant when using logic agents, whase abihity of reas oning about the
p raperies of the interactiors among agents before they actually occur, may be
ap owerful tool forsupp oding MAS designess.

So far we have focussed on the confogmance of the p olicies of a single agent to
a p robocol sp ecificasion. A curent yeSearch ssue that we aje studying conce s
the conditioms by which our notion of confofmance can be p roved comp os1t10nal.
Intwitively, given two agent p olicies that aje conformant to the same p rotocol
and that encode the diffejent roles foreseen by 1t, 18 would be 1nteesting sop rove
that the actual interaction of the two agents will also be confopnant.

Some authoss (e.g. [29]) havep rp ssed a different app roach to agent commu-
nication, the social app roach, 1n which commumcative actiors affect the “social
staté of thesystem, ratherthanthe internalstates of the agents. Thes ocial state
ecords the social facts, like the permissions and the commitments of the agents,
which aje created and modified along the 1nteraction. Different app roaches en-
able different §ypes of p rperies s0 be p roved [19]. For 1rstance the mental ap-
p roach 15 not well suited for the Vepnfication of open mulii-agent systems, wheye
the history of conmunicatiors 18 observable, but the internal states of the single
agents may not be accessed [29]. Therefore the s ocial app roach 15 taken 1n works
such as the one 1n [1], whee an gpensociety of agents 18 corsidered and shep rob-

lem of Vepnfying on the

Verifying Protocol Conformance for Logic-Based Communicating Agents 211

ﬂ}' the comphance of the agents’ behaVvior to p rotocols

specified 1n a logic-based fopnalsm (Social Integuty Corstyaints) 15 addyessed
by taking the p oint of View of an external entity that detects faulty behavioss.

Acknowledgement. The authop would like to thank Dy. Giuseppe Beqo for
the discussion about Agent UML.

References

1.

10.

11.

12.

M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Speci-
fication and verification of agent interaction protocols in a logic-based system. In
H. Haddad, A. Omicini, R. L. Wainwright, and L. M. Liebrock, editors, Proc. of the
2004 ACM Symposium on Applied Computing, SAC 2004, pages 72—78, Nicosia,
Cyprus, 2004. ACM.

M. Baldoni. Normal Multimodal Logics with Interaction Axioms. In D. Basin,
M. D’Agostino, D. M. Gabbay, S. Matthews, and L. Vigano, editors, Labelled De-
duction, volume 17 of Applied Logic Series, pages 33-53. Applied Logic Series,
Kluwer Academic Publisher, 2000.

M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Reasoning about self and others:
communicating agents in a modal action logic. In C. Blundo and C. Laneve, editors,
Theoretical Computer Science, 8th Italian Conference, ICTCS’ 2003, volume 2841
of LNCS, pages 228-241, Bertinoro, Italy, October 2003. Springer.

. M. Baldoni, L. Giordano, and A. Martelli. A Tableau Calculus for Multimodal

Logics and Some (un)Decidability Results. In H. de Swart, editor, Proc. of
TABLEAUX’98, volume 1397 of LNAI pages 44-59. Springer-Verlag, 1998.

M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Programming Rational Agents
in a Modal Action Logic. Annals of Mathematics and Artificial Intelligence, Special
issue on Logic-Based Agent Implementation, 41(2-4):207-257, 2004.

M. Barbuceanu and M.S. Fox. Cool: a language for describing coordination in
multiagent systems. In the 1st Int. Conf. on Multi-Agent Systems (ICMAS-95).
AAAT Press, 1995.

J. Bentahar, B. Moulin, J. J. Ch. Meyer, and B. Chaib-Draa. A computational
model for conversation policies for agent communication. In this volume.

A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and
P. Wolper. An efficient automata approach to some problems on context-free
grammars. Information Processing Letters, T4(5-6):221-227, 2000.

. A. Bracciali, P. Mancarella, K. Stathis, and F. Toni. On modelling declaratively

multiagent systems. In Leite et al. [25], pages 76-92.

L. Cabac and D. Moldt. Formal semantics for auml agent interaction protocol
diagrams. In Proc. of AOSE 2004, 2004.

R. S. Cost, Y. Chen, T. Finin, Y. Labrou, and Y. Peng. Modeling agent conver-
sation with colored petri nets. In Autonomous Agents Workshop on Conversation
Policies, 1999.

U. Endriss, N. Maudet, F. Sadri, and F. Toni. Logic-based agent communication
protocols. In F. Dignum, editor, Advances in agent communication languages,
volume 2922 of Lecture Notes in Artificial Intelligence (LNAI), pages 91-107.
Springer-Verlag, 2004.

212

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

M. Baldoni et al.

J. Esparza, P. Rossmanith, and S. Schwoon. A uniform framework for problems
on context-free grammars. FATCS Bulletin, 72:169-177, October 2000.

L. Farinas del Cerro and M. Penttonen. Grammar Logics. Logique et Analyse,
121-122:123-134, 1988.

M. Finger, M. Fisher, and R. Owens. Metatem: modeling reactive systems us-
ing executable temporal logic. In the Int. Conf. on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems (IEA-AIE), 1993.

M. Fisher and M.J. Wooldridge. Specifying and executing protocols for coopera-
tive actions. In the Int. Working Conf. on Cooperative Knowledge-Based Systems
(CKBS-94), 1994.

Foundation for InteroPerable Agents. Fipa modeling: Interaction diagrams. Tech-
nical report, 2003. Working Draft Version 2003-07-02.

L. Giordano, A. Martelli, and C. Schwind. Verifying communicating agents by
model checking in a temporal action logic. In J. Alferes and J. Leite, editors, 9th
European Conference on Logics in Artificial Intelligence (JELIA’04), volume 3229
of LNAI pages 57-69, Lisbon, Portugal, Sept. 2004. Springer-Verlag.

F. Guerin and J. Pitt. Verification and Compliance Testing. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 98—
112. Springer-Verlag, 2003.

J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Company, 1979.

M. P. Huget and J.L. Koning. Interaction Protocol Engineering. In H.P. Huget,
editor, Communication in Multiagent Systems, volume 2650 of LNAI, pages 179—
193. Springer-Verlag, 2003.

M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems via
unbounded model checking. In Proc. of the 3rd Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS04), New York, NY, USA, 2004.

J.-L. Koning, G. Franois, and Y. Demazeau. Formalization and pre-validation for
interaction protocols in multiagent systems. In the 13th European Conference on
Artificial Intelligence (ECAI-98), 1998.

K. Kuwabara, T. Ishida, and N. Osato. Agentalk : describing multiagent coordina-
tion protocols with inheritance. In 7th Int. Conf. on Tools for Artificial Intelligence
(ICTAI-95), 1995.

J. Leite, A. Omicini, P. Torroni, and P. Yolum, editors. Int. Workshop on Declara-
tive Agent Languages and Technology, New York City, NY, USA, July 2004. Volume
3476 of LNAI Springer-Verlag, 2005.

H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl. GOLOG: A
Logic Programming Language for Dynamic Domains. J. of Logic Programming,
31:59-83, 1997.

J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for agents. In Pro-
ceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence. 2000.

L. R. Pokorny and C. R. Ramakrishnan. Modeling and verification of distributed
autonomous agents using logic programming. In Leite et al. [25], pages 172-187.
M. P. Singh. A social semantics for agent communication languages. In Proc. of
IJCAI-98 Workshop on Agent Communication Languages, Berlin, 2000. Springer.
C. Walton. Model checking agent dialogues. In Leite et al. [25], pages 156-171.

An Application of Global Abduction
to an Information Agent
Which Modifies a Plan Upon Failure
- Preliminary Report -

Ken Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
ksatoh@nii.ac.jp

Abstract. This paper proposes an implementation of an information
agent in a new form of abductive logic programming called global ab-
duction [11]. We consider an information agent which performs not only
information gathering, but also actions which update the outside world.
However, since the success of the actions is not guaranteed, the agent
might encounter a failure of some action. In this case, the agent needs to
modify an alternative plan with consideration to the side-effects caused
by the already-executed actions. In this paper, we solve the problem of
such plan modification by using global abduction. Global abduction is a
new form of abduction whose abducibles can be referred to in any search
path once abduced. This mechanism is used to propagate information
about already-executed actions so that we can modify an alternative plan
to accommodate side-effects caused by the already-executed actions.

1 Introduction

Thanks to the Internet, human activity within cyberspace has become accel-
erated and sometimes beyond one’s ability to control. Therefore, supp ot by
infopmation agents has become Very mp ortant. However, curent research on
information agents 18 mainly limited to “infopmation gathepang which aids one
element of human activity within the cyberspace. Anothey mp orfant aspect of
infopmation manp ulation 15 up dating outside infopnation souyces such as mak-
1ng online-yeservVations or ordenng a p roduct online. The m @t distingushing
praperty of such updating actiors 1 that they may include side-effects 1o the
outside word and theefore these wp dates may 1nﬂuence the agents’ subse®uent
act1vity.

To make things moe complicated, thee are a lot of uncefainties on the
success of such updates. In other words, even though agents can make a plan
10 achieve a given goal, they cannot guamantee that the plan will always be
successful since they may rely onsome assumpiions about the outside wodd. For
examp le, supp ose that an agent makes a schedule for a wSeys $p abyroad. The

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 213-229, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

214 K. Satoh

agent would create aplantoask an aiplane company tomake a jeservation of a
ﬂlght and to ask a hotel tomake a yeservation for the acconm odation. HoweVer,
one of these jeseyvatiors might fail since we do not know whether theye aje any
vacancles on the ﬂlgh‘s or the hotel. This mears that there might be a faillue
of infopmation manip ulation act1vity and therefore, we need to modify the plan
up on fallue. However, aleady-executed actiors might cause side-effects and we
need o care about such side-effects when we corsider an alternative plan.
In this paper, we use the following m ot1vating examp le:

1. An agent 15 asked %o buy a good book on the subject of computes using a
credit card “cadl or“card2 .

2. We assume that the bank account associated with the credit cayd might not
contain enodgh money to buy the book.

3. The agent makes a plan which comssts of logging-in to a site selling books
and searyching fora book on thesubject of computess, and puichasing a cpy
with a credit cad.

4. The agent logs 1n to a site selling books (called “ama oh) with a usey ID
ass ociated with a credit cad.

5. Supp ose that the agent logs 1n as the user of credit cayd “cadl .

6. The agent asks fora good book on thesubject of conpute s tothe “ama oh
site and the site eturrs 1nfommation about a book (named “linuk).

7. The agent tp1es topurchase a cy of the book using the credit cayd “caydl .

8. It tupms out that the bank account for “cardl cannot be used because the
account does not comsain encugh money to buy the book.

9. The agent backijacks to make an alternative plan topuchase the book by
using the other credis cayd “cad2 .

10. HoweVer, the agent has 1o log-1in with a usey ID associated with “cayd2 . We
assume that the system does not allow double logging-in and so, the agent
must log-out ;8% and then log-1n t0 “ama oh again as the user of “cayd2 .

11. Since the agent alyeady knows about a good book on computes (“hnuk),
the agent avaids seajching for the book again.

12. The agent directly p roceeds topuchase the book by using the credit cad
“card?2 .

The charactepstics of ap roblem class corsideyed 1n this paperare as follows:

— Thee 15 a farlure 1n the plan (authon ation of “caydl) which could not
have been anticipated when the plan was fist executed.

An agent makes actiors with side-effects (an agent logs-in as the user of
“cardl).

An agent changes the plan on the ﬂy when fallue occus.

— An agent must corsidey the side-effects from the aljeady-execused actiors
when changing the plan (an agent logs-out as the wser of “caydl and then
logs-1n as another user ass ociated with “cad2).

An agent canmake use of these side-effects 1n the changed plan (a yesult of
seach of a book on the computer 18 reused).

An Application of Global Abduction to an Information Agent 215

There aje many reseajch 1ssues involved inmaking an agent do tasks such as
the above.

— How top rgpagate the information gained from aleady-executed actiors 1n
one plan to alte rnative plams?

— How to1dentify the exact situation when the failure 1n execution of the plan
occup?
(In the working example, the agent 15self had to figure out whether the agent
had alyeady logged 1n or nos.)

— How tomake a new plan at the failure p aink?
(e.g. what does the agent do 1n order topuchase the book when 1t $ups
out that “caydl 15 not authon ed?)

— What aje the semantics for this agent’s behaviour in order to corsider the
correctness of the agent’s 1nternal mechamsm?

We solve the above p roblem by 1nt roducing a new fogn of abduction 1n logic
p rogramming called global abduction [11]. In the p revious abductive logic p ro-
gramming framework (see [6] for a comp rehersive suyvey), we use abduction
to conplement unknown 1nfogmation when the depVvation of a goal needs such
hyp otheses. HoweVer, these hyp otheses aye vahid only 1n the depvation path to
achieve the goal and theye 15 no 1nﬂuence on the otherseajch path. We call this
type of abduction local abduction.

For global abduction, we 1ntroduce a global belief state, a store of global
infoamation, which can be accessed from any search path, and two annotations,
announce(P) and hear(P). announce(P) assets a ground literal P 1n the global
belief state. After announce(P) 18 executed, P becomes tyue globally as 1if 1t was
assepted 1n the beginming of the execution. This mears P 15 abduced not only
1n the seach path whee the announcement 13 done, but als op rgpagated to the
otherseaych paths as 1f 18 wese tyue 1n the beginmng. hear(P) 5 used tosee the
tath value of P 1n a global belief state. If P has alyeady been announced 1n the
global belief state by announce(P), hear(P) 1s succeeded. If the comp lement of P
has alyeady been announced 1n the global belief state, hear(P) fails. Otheywise,
the execution related with hear(P) 1s suspended and other depvationpath will
be tavesed.

Using global abduction, we cansolve the above p roblem class as follows.

— How top rpagate aleady-executed actiors 1n one plan to anotherplan? =
These actiors are regarded as abducibles for global abduction. Every time
an action with side-effects 1 pefommed, 1nfopmation about such actiors s
p rapagated to other alternative plams by announcing these abducibles.

— How to01dentify the exact situation when the failure 1n execution of the plan
occus? = By hearing abducibles 1ep jesenting aleady-executed actiors, we
can detect these actiors and simulate these actiors 1n alternative paths to
modify a new plan.

— How tomake a new plan at the fallure p aant? = We corsider an alte rnative
plan by backtacking to the choice p aint and m odify the altenative plan if
necessary according to the side effects of the aleady-executed actiors.

216 K. Satoh

— What aje the semantics for this agent behaviour to talk about the correct-
ness of the agent’s 1nternal mechamsm? = We use the semantics of global
abduction called “all’s well that ends well (AWW) principle” which
meays that if we add the last set of abduced atoms to the 1mtial p rogram,
the same result 15 depved by the usual SLDNF p rocedue.

l

—> SELECT A PLAN

L

MODIFY A PLAN

L

. EXECUTE ACTION

L

RECORD ACTION

1

no

ACTION SUCCEEDED

Lyes

PLAN FINISHED?

Lyes

END

PLAN LIBRARY
o

MODIFICATION RULES

S~
No

 1]‘: PAST ACTION INFORMATIO

Fig. 1. Plan Execution with Plan Modification upon Failure

One of the key 1deas p yesented 1n this paper 15 plan modification. In Fig. 1, we
show how to execute aplan with planm odification up on farlure. Weselect aplan
from aplan-hibmay to achieve a given goal. Then, we check whether there exist
thepast executed actions. If suchpast actioms exist, wem odify theplanaccording
toplanm odification pules. After a m odificasion, we execute a modified plan and
record actiors dupng the plan execution. If an action 1n the plan fails, then
we select anotherplan and modify the plan according to the alyeady-executed
actiors. We 1teate through the above p rocess until all the execusion of actioms
1n the plan ae perfommed. This s a diffejent modification method fron the

An Application of Global Abduction to an Information Agent 217

one corsidered 1n [9]. In [9], they corsider generating a modified plan fron the
currens plan using action-effect pules while we use plan m odification rules which
directly modify a plan without action-effect pules.

We mplement this 1dea by global abduction 1n logic p rog amming. We back-
track to the choice p oint up on failure of actions and then corsider an alternative
plan. HoweVvey, theje might be s one side-effects which influence the alte rnative
plan. If so, we modify an alternative plan to acconmodate these side-effects.
To check such side-effects, we announce the alieady-executed actiors 1n other
alternative paths by global abduction. Then, 1n othey alée rnasive paths, we refer
to these actiors using heapng hiteals, and corsider a m odification of alée native
plars.

The structure of the paper 13 as follows. In Section 2, we review (shghily
m odified) framework of global abduction and show a solution of the m oh1vating
examp le using global abduction. Then, we jeview semantics of the framework and
a correct p roof p rocedure of the framework w.rt. the semantics. In Section 3, we
show an execution tace of the mot1vating example. In Section 4, we discuss the
related works, and we summaq e our cont gbutiors and discuss future reseach
1n Section 5.

2 Global Abduction

We g1ve an adapted formali ation of global abduction used for a solution of the
working examp le. The diffeence between global abductionin [11] and this paper
18 that we 1t roduce a “cut (peratorl and omit infegpty corstaints and mp e
an evaluation st ategy of goals which aje used in PROLOG; a dep th-fist seach
with pght-to-left evaluation of the body of the rale and tp-to-bottom tnal over
rLl]GS.

2.1 Framework of Global Abduction

Definition 1. A global abductive fiamework GA is the following tuple (B, P)
where

— B is a set of predicates called behef p redicates.
Let A be an atom with belief predicate. We call A ap s181Ve belef hiteyal, or
a belef atom and —A a negasive behef hiteal. We call a literal of the above
form belief hteal. Let Q be a belief literal. We introduce annotated liter-
als announce(R) and hear(Q) called announcing literal and heanng hiteral
respectively. We say that announce(Q) contains) and hear(Q) contains Q.
— P is a set of rules of the form:

H: —Bl, BQ, ceey Bn
! Note that in [11], we show how to implement “cut” in global abduction with integrity

constraints. Thus, the introducing “cut” does not cause any extra control mechanism.
In this paper, however, we omit the detail for simplicity.

218 K. Satoh

where

e H is an ordinayy atom which is neither an annotated literal, an equality
literal nor a belief literal.

e cach of By,...,B, is an ordinary atom, or an annotated literal, or an
equality literal of the form t = s, or a disequality literal of the form t # s
or ’I’ (called a cut operator).

We call H a head denoted as head(R) and By,..., B, a body denoted as
body(R). If there are no atoms in the body, body(R) = (.

Intwtively, annotated hiterals have the following meaning.

— For global abduction, we 1introduce a global belief state, a store of global
infognation, which can be accessed from any seach path.

— Announcing literal announce(L) 15 an asseion of a ground p s181ve/ negative
belief L $0 the global behefstate. This mears while we tave se aseachspace
to achieve a goal, some of the facts aje added by the p rogram 1itself. Then,
from anotherseach path, we can access this addition using a heaping hiteal.
Therefore, L 5 “globally abduced by announce(L).

— Heanng literal hear(L) 15 a check of a ground p w1t1ve/negative behef L 1n
the cupent belef state. If L 15 included 1n the curent behef state, hear (L)
concides with the tyuth value of L w.rt. the cuprient belef state. Elke 1if
L 18 not included 1n the current belef state, the syuth value of hear(L) 18
undefined and the evaluation 13 p Sp oned.

The following p rogram shows a solution to the motivating example of book
purchase?

Example 1. Rules forplan geneasion:

plan(Genre,cardl,Plan):-
modify_plan(
[login(id1l) ,book_search(Genre,Book) ,purchase(Book,cardl)],
Plan).
plan(Genre,card2,Plan):-
modify_plan(
[login(id2) ,book_search(Genre,Book) ,purchase(Book,card2)],
Plan).

The above rules 1ep eSent two alternative plans that an agent logs 1n either as
id1 (associated with cardl) or id2 (associated with card2) and then seayches
for a book on the genie specified as Genre. Howevey, we have to check whether
thee were any p reVious actiors which lnﬂuence the current plan. If so, we make
a plan m odification according to the following rules.

2 Note that a string starting with an upper case is a variable and a string starting
with an lower case is a constant.

An Application of Global Abduction to an Information Agent 219

Rules for Plan Modification
modify_plan([],[]1):-!.

modify_plan([login(ID) |Plan], [login(ID) |RevisedPlan]) :-
hear(logged_in(ID1)),ID=/=ID1,hear(logged_out(ID1)),!,
modify_plan(Plan,RevisedPlan).
modify_plan([login(ID) |Plan], [logout(ID1),login(ID) |RevisedPlan]):-
hear(logged_in(ID1)),ID=/=ID1,!,
modify_plan(Plan,RevisedPlan).
modify_plan([login(ID) |Plan], [login(ID) |RevisedPlan]):-!,
modify_plan(Plan,RevisedPlan).

modify_plan([book_search(Genre,Book) |Plan] ,RevisedPlan) :-
hear (book_searched (Genre,Book)), !,
modify_plan(Plan,RevisedPlan).
modify_plan([book_search(Genre,Book) |Plan],
[book_search(Genre,Book) |RevisedPlan]):-!,
modify_plan(Plan,RevisedPlan).

modify_plan([purchase(Book,Card) |Plan],
[purchase (Book,Card) |RevisedPlan]):-!,
modify_plan(Plan,RevisedPlan).

For aplan for the login action, we fistly ersuje that the agent curently does
not log 1n as another ID. If there 15 a history that the agent logged 1n, we also
check that the agent has alyeady logged ous. If so (1in the second yule), thee 1
no modification 1n a plan so that the agent diectly logs 1n, otheywise (in the
thiyd rule), we add the logout action before logging 1n. If there 13 nosuch history
(1n the foursh yule), we do not need to change the plan 3

The fifth and sixth pules aje for an action of seayching for a book. The fifth
rile 13 a deletion of redundant searxch of a book. If a book has alyeady been
seajched for the genye Genre, the agent no longerseaiches for another book for
the genre. We use a heapng hitepal for book_searched (Genre,Book) forsuch a
check. If a book has aljeady been seaiched for, we modify the plan by deleting
the action of seach. Otheywise, we do not need to change the plan. Note that
since we adgpt the tp-bottan tnal stategy, we should check 1n the fist place
whether the seajch of a book has been done so that we can guayanteed that
theye has been nosuch seach when we execute the sixth pule.

The seventh pale 15 for an action of buying a book. We could put another
rule 0 avold the yedundant puchase like seajch action, but we omit the yule for
smmp licity.

3 Precisely speaking, if we have a history of multiple log-ins, we need to keep a cor-
respondence between log-in’s and log-out’s. However, we do not consider here for
simplicity.

220 K. Satoh

Rules for execution:

execute([]):-!.
execute([login(ID) |Plan]) : -
login(ID),execute(Plan).
execute([logout (ID) |Plan]) :-
logout (ID) ,execute(Plan).
execute([book_search(Genre,Book) |Plan]) : -
book_search(Genre,Book) ,execute(Plan) .
execute ([purchase (Book,Card) [Plan]) : -
purchase (Book,Card) ,execute(Plan).

Rule for logging-1n amazon site:

login(ID):-!,
announce (action(login(ID))@amazon) ,announce(logged_in(ID)) .
announce (action(login(ID))@amazon) exp yesses that an action of logging-1n

1o amazon as ID and 1ts history 1 recorded as logged-in(ID) by announcing 1%
by global abduction.

Rule for logging-out fron amazon site:

logout (ID):-!,
announce (action(logout (ID))@amazon) ,announce (logged_out (ID)) .

Rule forseaching books:

book_search(Genre,Book) : -
hear (book_search(Genre,Book)@amazon),!,
announce (book_searched (Genre,Book)) .

In this action, the seaych command 18 dispatched to amazon site and wait till the
site jetups a book infopnation. When the infoimation 15 returned, the agent
announces 1t by global abduction of book_searched(Genre,Book).

Rule forpurchasing a book:

purchase (X,CARD) : -
hear (authorize (CARD) @checker), !,
announce (action(purchase(X,CARD))@amazon) .

The above yule checks whether the cyedit cayd CARD 15 authop ed or not, if not,
1t smmply fails and otheywise, we submit a puchase command to amazon.

2.2 Semantics for Global Abduction

In this subsection, we brleﬂy explain the semantics of global abduction. Reades
who would like 0 know the detail of the semantics, see [11].

We use the thiee-valued semantics of logic p rograms [1,10] since the $uth
value of the belief hitejals can be undefined when the cupent belef state does

An Application of Global Abduction to an Information Agent 221

not decide theiy tputh values. We extend the thiee-valued least model so that
the semantic of the global abduction aye indexed w.r.t. a belief state. A behef
state BS 1 the set of behef iteyals which 1ep yesents agent’s belief. We define
i rath-values of belief iterals w.r.t. BS as follows:

— If a iteal L 1n BS, L 15 said to be tyue w..t. BS.
— If the complement of a hteyal L 1n BS, L 15 said to be false w.r.t. BS.
— Otheywise L 18 said t0 be undefined w.r.t. BS.

Let P be sets of yales. We fistly eplace announce(L) and hear(L) by a
corresp onding behief hteral L. We dencte a set of ground rales obtained by
eplacing all the vapables 1n every rule of the esulting p rogram by every temn
1n the language as IIp. Then, we tamslate IIp 1nto anothe rp rogram Hgs which
18 yeduced by BS as follows.

— We delete eveyy pale 1n the p rogram I1p which contairs a false belief hiteal
w.r.t. BS 1n the body.

— We delete every tpue hteal w.r.s. BS and ieplace every undefined hiejal
w.rt. BS by aspecial atom undef 1n the body of the yemaimng rules.

We assume that the tuth value of undef 15 always “ und{c;ﬁne’d .

We also drgp the “cut @eatorsince 1t does not 1intuence the correctness
of the program. Then, the reduced p rogram Hgs 13 a nomnal logic p rogram
which may have undef 1n the body. Then, we follow the thee-valued least m odel
semantics [1] to give the tyuth value of an ordinary ground atom. We say that
the thiee-valued least model of HES 15 the assumption-based three-valued least
model of P w.r.t. BS.

2.3 Proof Procedure

In this section we give a p roof p rocedure which 15 correct 1n the above seman-
t1cs. The execution of global abductive framework 18 based on process reduction.
Intwitively, p rocesses aye created when a choice p oint of comp utation 18 encoun-
tered hike case sp hitéing. A p rocess te minates successfully if all the comp usation
15 done and the behef hiterals used 1n the p rocess are not cont radictory with the
last belief state. As the subse®uent theoyem shows, if we Ieﬂect the last belef
state BS o thep rogram P by corsidenng IT5%, then the same jesulé 15 obtained
by usual SLDNF p rocedure. Therefore, we call this p pnciple “all’s well that ends
well (AWW)” p anciple 1n that we talk about the correctness at the last belef
state when we get an arswer.

In the p rocedure, we reduce an act1ve p rocess 1nto a new p rocess. Reduction
for an ordinayy atom 1s a usual goal yeduction 1n logic p rogramming and reduc-
$1on for an announcing hiteral coresp onds with an up date of the belef state and
reduction for a heapng hteal coresp onds with an in®uiy to the behef state.

Updating the belief state by an announcing hiteral may yesulé 1n the suspen-
sion of the current executed p rocess and change of the execution to an aliernative
P rocess.

222 K. Satoh

Preliminary Definitions
We define the following for explanasion of the p roof p roceduye.

Definition 2. A process is the following tuple (GS, BA, ANS) which consists
of

— GS: a set of atoms to be proved called a goal set.
— BA: a set of ground belief literals called behef assump t1or5.
— ANS: a set of instantiations of variables in the initial query.

A p rocess exp esses an executionstatus in apath inthe seaych tyee. The intuitive
meaning of the above objects 15 as follows:

— GS exp resses the curent status of computation.
— BA 15 aset of behef assumptioms used dupng a p rocess.
— ANS gives an arswer for Vapables 1n the 1mtial queyy.

We use the following twosets forp rocess reduction.

Definition 3.

— A process set PS is a set of processes.
— A curent belief state CBS is a belief state.

PS 15 aset of processes which exp jess all the alternative comp utatiorns con-
sidered so fay, and CBS 15 the curent behef state which exp yesses the agent’s
currend behef.

Definition 4. Let (GS,BA, ANS) be a process and CBS be a current belief
state. A process is active w.r.8. CBS if for every L € BA, L is true in CBS
and a process is suwpended w.r.5. CBS otherwise.

If BA contradicts CBS, the execution of p rocess 18 comsidered to be useless at
the curent belief state and theefore, the p rocess will be susp ended.

Description of Proof Procedure

In the following jeduction, we specify only changed PS, CBS as NewPS,
NewCBS; otheywise each PS,CBS 1s unchanged. We m odified the p roof p roce-
duye 1n [11] $o mp e a PROLOG-like evaluation st ategy 1n order to use “cuk
peraior

Initial Step: Let GS be the 1nitial goal set.
We give (GS, 0, AN S) %0 thep roof p rocedure whee AN S 15 aset of vapables
inGS. That s, PS = {(GS,0, ANS)}. and let CBS be the imtial set of belief
liteqals.

Iteration Step: Do the following.
Case 1 Iftheje s anactivep rocess (), BA, ANS’) w.p.8. CBS 1n PS, yetum

1stantiation for vapables AN S’ and the curent belef state CBS.

Case 2 If PS 15 emp#ty, eturn “failluze .

An Application of Global Abduction to an Information Agent 223

Case 3 Select them st recently added activep rocess (GS, BA, ANS) w.r.t.
CBS fyom PS and select a left-m st hiteral L (an ordinayy atom, or an
efuality atom, or a dise®uality atom, or an annotated hiteral or “cut
gemator) 1n GS which satisfies one of the conditiors 1n the following
subcase. If thee 15 nosuch p rocess, return “ﬂounderm@ .

Let PS’ = PS — {(GS,BA,ANS)} and GS" = GS — {L}.
Case 3.1 If L 15 an ordinayy atom,
append the following p rocesses o0 PS’ 1o fyon NewPS:
{{({body(R)} U GS")0, BA, AN S0)|
R € P and Im st general unifiey(mgu) 6 s.i. head(R)0 = L6}
1n the order of matched ypules 1n the p rogam.
Case 3.2 If L 15 an e®uality atom ¢t = s,
Case 3.2.1 if there 15 an mgu 6 between ¢t and s, then NewPS =
{(GS'9,BA,ANSO)} U PS’
Case 3.2.2 eke 1f thee 13 nosuch mgu, then NewPS = PS’.
Case 3.3 If L 18 an dise®uahty atom ¢ # s, and ¢t and s are ground
tens,
Case 3.3.1 if t and s aje diffejert ground teyms then NewPS =
{(GS',BA,ANS)} U PS’
Case 3.3.2 else if t and s aje 1dentical tens, then NewPS = PS’.
Case 3.4 If L 15 a heapjng hiteral hear(Q)) and thee 1s a ground 1m8tance
of @ 1n CBS, then NewPS = {(GS',BAU{Q},ANS)} U PS’.
Case 3.5 If L 1 a ground announcing hteral announce(A), then
NewPS = {{(GS",BAU{A}, ANS)} UPS’, and
NewCBS = CBS\{A} U {A}.

Case 3.6 If L 15 the “cut @emtor ! , then we delete all alternatives
reduced to the body of alternative pules competing with the pule
which contairs the above cut.

” All’s Well that Ends Well (AWW)” Principle

The following theoyem shows correctness of the above p rocedure. The theorem
intwit1vely mears that when we receive an arswer of execusion, the arswer 18
correct 1n the assumption-based thiee-valued model w.rt. the p rogram and the
final behef state. This 15 an 1dea of AWW principle.

Let ANS’ be an 1mstantiation of the vapables and GS be the 1mtial goal. We
wote GS o ANS’ as the goal obtained from GS by replacing vanables in GS by
corresp onding temn 1n ANS’. Let M be the assump s1on-based least thiee-valued
model of the p rogram w.p.%. a behef state. and {L1, ..., L,} be aset of ground
Iterals. We wate M |= {L1,...,L,} 1f L; 15 tyue 1n M.

Theorem 1. Let GA be a global abductive framework (B, P). Let GS be an
wmitial goal set. Suppose that an instantiation of the variables ANS' and the
current belief state CBS are returned. Let M be the assumption-based three-
valued model of P w.r.t. CBS. Then, M = GS o ANS’.

A proof of Theorem 1 can be found 1n [11].

224 K. Satoh

3 Execution of Global Abduction

We show an execution trace of Example 1 using the above p roof p roceduye. Since
no belef hteyal changes 1ts tuth-value once announced 1n the example, we omit
belief assumpsiors of a p rocess, and show only goal sets.

1. The agent staps from the following 1mtial goal meamng that the agent fistly
makes aplan and then executes the plan.
plan(computer,Card,Plan) ,execute(Plan)

2. The goal 15 reduced to two altenative plars. Fistly, the agent cormsidess the
following goal of a plan wing the credit caid cardl.
modify_plan(

[login(idl) ,book_search(computer,Book) ,purchase(Book,cardl)],
Plan),
execute (Plan)

3. To check whether the agent should m odify the plan related with logging-in
action, the agent checks the thiee pules for the logging-1n action, but since
thee 13 noinfounation that she agent logged-1n, the st and sthesecond yules
are suspended and the thiyd pule 18 selected and the plan 15 not modified.

!, modify_plan(
[book_search(computer,Book) ,purchase (Book,cardl)],
RevisedPlan),

execute([login(idl) |RevisedPlan])

4. By executing a cut “! | the suspended goals ass ociated with the it and the
second pales of logging-1n 18 deleted.
modify_plan(

[book_search(computer,Book) ,purchase (Book,cardl)],
RevisedPlan), execute([login(idl) |RevisedPlan])

5. To check whether the agent has to modify the plan related with seaching
for a book, the agent fist checks by using heanng hiteal 1n the fist pule of
searching for books whether a book seajych has been aleady perfoined or
not. This time theye 15 no such 1nfopmation about the curent behef siate,
and s o, the fist rule of seaching for books 15 suspended and the second yule
15 wsed to reduced the goal.

! ,modify plan([purchase(Book,cardl)],RevisedPlanl),
execute([login(idl) ,book_search(computer,Book) |RevisedPlani])

6. By executing a cut “1 | the suspended goals associated with the fist yule of
seaching for books 15 deleted.
modify plan([purchase(Book,cardl)] ,RevisedPlanl),
execute([login(idl) ,book_search(computer,Book) |RevisedPlanl])

7. Since thee 15 nom odification rule of the puichase action, we reduce the goal
without any modification of the action.
execute (

[login(idl) ,book_search(computer,Book) ,purchase(Book,cardl)])

8. The agent logs 1n as idl.
login(idl),

execute ([book_search(computer,Book) ,purchase (Book,card1)])

10.

11.

12.

13.

14.

15.

16.

17.

18.

An Application of Global Abduction to an Information Agent 225

The agent executes an action of logging-in by sending a login conmand to
amazon, and announcing a histoyy of the logging-1n as id1.
! ,announce(action(login(idl))@amazon) ,announce (logged_-in(id1)),
execute ([book_search(computer,Book) ,purchase (Book,cardl)])
The agent executes a book-search action.
book_search(computer,Book) ,execute([purchase(Book,cardl)])
Toseach for a book, the agent asks amazon whether there 15 a good book
on comp uter by the heapnng p redicate of
book_search(computer,Book)@amazon,
and then announces a histoyy that the agent knows about a good book on
comnp uter.
hear (book_search (computer,Book)@amazon) ,
! ,announce (book_searched (computer,Book)),
execute ([purchase (Book,card1)])
We assume that amazon returs a book linux. Then, the agent puichases
the book with cardl.
purchase (linux,cardl) ,execute([])
Topurchase the book titled linux, the agent needs to ask a checker agent
1n oder to confiyn that cardl 13 authop ed.
hear (authorize(cardil)@checker),
! ,announce (action(purchase(linux,cardl))@amazon),
execute([])
Supp ose that this plan s failed because the payment of cardl s not autho-
a ed.
The agent backtyacks to the other aliernative plan 1n that the agent uses
card2. So, the agent checks whether theie 18 a need of modificasion of an
alternative plan by the aljeady-executed action.
modify_plan(
[login(id2) ,book_search(computer,Book) ,purchase(Book,card2)],
Plan), execute(Plan)
The agent checks whether he has alyeady logged 1n and logged ous.
hear (logged_in(ID1)),id2=/=ID1,hear(logged_out (ID1)),
! ,modify_plan(
[book_search(computer,Book) ,purchase (Book,card2)],
RevisedPlan), execute([login(id2) |RevisedPlan])
The above goal 13 suspended since there 18 no infommation abous
hear (logged_out(id1)) and the agent checks thesecond rule forlogging-in.
hear(logged_in(ID1)),id2=/=ID1,
! ,modify_plan(

[book_search(computer,Book) ,purchase(Book,card2)],
RevisedPlan), execute([logout(ID1),login(id2) |RevisedPlan])
In this case, since the agent has not logged out from amazon site, the
agent adds the action of logging-out as id1 before logging-in as id2. This
expresses a plan modification mechanism with the consideration
of already-executed action. By the cut gpeasion, the fist aliernasive 1

rem oved.

226 K. Satoh

modify_plan(
[book_search(computer,Book) ,purchase (Book,card2)],
RevisedPlan), execute([logout(idl),login(id2) |RevisedPlan])

19. The agent checks whether he has aleady known a good book on computer
by using the heanng p redicate.
hear (book_searched (computer,Book)),

! ,modify_plan([purchase(Book,card2)],RevisedPlan),
execute([logout(idl) ,login(id2) |RevisedPlan])

20. This tme the agent has aljeady known a good book 1inux so, we jem oVe the
book-search action from the plan. This also represents a plan modifica-
tion mechanism with the consideration of already-executed action.
In this case, in stead of adding an action, we delete a redundant
action.
modify_plan([purchase(linux,card2)],RevisedPlan),
execute([logout(idl) ,login(id2) |RevisedPlan])

21. Since there 15 nom odification yule of the pujchase action, we reduce the goal
without any modification of the action.
execute([logout(idl) ,login(id2) ,purchase(linux,card2)])

22. The agent logs out from amazon by id1.
logout (idl) ,execute([login(id2) ,purchase(linux,card2)])

23. The agent executes an action of logout by sending a logout command to
amazon, and announcing a history of the logging-out as id1.

! ,announce (action(logout (id1))@amazon) ,announce (logged_out (idl)),
execute([login(id2) ,purchase(linux,card2)])

24. The agent logs 1nto amazon as id2.
login(id2) ,execute([purchase(linux,card2)])

25. The agent executes an action of logging-in by sending a login conmand to
amazon, and announcing a history of the logging-1n as id2.

I ,announce (action(login(id2))@amazon) ,announce (logged_in(id2)),
execute ([purchase (1inux,card2)])

26. Thanks toplanm odification, the agent no longer needs toseaich fora book
again and he canp roceed to the action of puchase of the book.
purchase (linux,card2) ,execute([])

27. Topuchase a book 1inux, the agent needs to ask a checker agent o confim
that card2 18 authopn ed.
hear (authorize(card2)@checker),

! ,announce (action(purchase(linux,card2))@amazon),
execute([])

28. Supp e that authop 1ng the caid 18 succeeded, then the agent dispatches a
pychase conmand to amazon with the ciedit cayd card2.
announce (action(purchase(linux,card2))@amazon) ,execute([])

29. Finally, there 15 no action which should be pefopned and the agent accom-
plishes the puchase of the book.

An Application of Global Abduction to an Information Agent 227

4 Related Work

Theye are some p reViously published works on 1nfoimation manmp ulation [7, 2]
which corsider not only 1nfoimation gathening (or in other words, sersing) but
also actiors.

Golden [2] handles infopmation under the gen-wogdd assumpiion and 1néro-
duces “local clsed world infoimatsioh (LCW) which temp orapnly make a clesed
wodd assumption which can be later jevoked. They show how LCW can avod
redundant infopnation gatheing. However, they do not corsider any replanmng
up on failure.

Knoblock [7] discusses replanning 1n 1nformation gathe ung. However, he only
corsides actiors with regard to infopmation access to other serves without
side-effects. A yeplan s only for accessing otherinfommationsources up on fallure
caused by a system-down of one infoynation souces and theyefore, 18 does not
perfom any complex jeplanning.

There ate a lob of works relating with cogmtive robotics [3,8,12,13] which
could be applied to the example comsidered hee. Although the above works
are amed at pgorous semantics, they do not seem %o caje about efficiency Very
sepiously and the jeplanmng 1s usually made fyrom scatch again aftey identifying
the current situation. As p ointed out 1n the Int roduction, our framework of plan
m odification 13 different from the one cormsidered 1n [9]. In [9], they comsider
a modified plan fron the existing plan using action-effect rules wheieas we use
planm odification rules which can dijectly modify jules. Theefore, the agument
1n [9] on the yeplanmng from scyatch and plan modification 15 not apphed heqe.

Hayashi et al. [4,5] give a framework for agemts which perfoin planmng,
make actiors with side effects and epairplams on the ﬂy 1n a Hiepachical Task
Network (HTN) planmng. In their wotk, every tmme an action with side effects
s perfommed,

— for an undoable action, undoing action se®uences will be 1rseged 1n the
beginmng of every alternative plan,

— alternative plars which 18 incompatible with side effects will be deleted,

— and 1if there ae alternative plars with the same action 1n the beginning, the
action will be deleted 1n these plams to avod redundant action.

The diffe ence between their work and ous 13 that they only corsider undoing
of the action or deletion of redundant action 1n the beginmng of aléernative
plams for a modification of actiors, wheeas we can be moje ﬂcx1blo in aplan
m odification by acconm odating side-effects using heanng p redicates.

5 Conclusion

The cont pbution of the paperis toshow a basic mechamsm using global abduc-
t1on of an infopmation agent which m odifies an alte rnas1ve plan to acconm odate
side-effects by aleady-executed actiors.

228 K. Satoh

We need topusue the following futue reseach.

— We would like to define an action language which 18 ausgnatically tarslated
10 a logic p rogram with global abduction. This language will be a general
framework for replanning.

— We would like to apply this solution to Vapous infopmation activities to
assess 1ts feasibihity.

— We would like 0 jelax the corstaint of the evaluasionstategy (a depth-fist
seach with pght-to-left evaluation of the body of the pule and tp-to-bottom
tpnal over rules) of the framework.

Acknowledgements. This jesearch 15 pagly supp orded by Granms-in-Aid for
Scientific Reseach from JSPS, No. 16200010. I thank Hideak: Takeda fron NII
forsuggesting the moti1vating example on 1nfonation agents. I akso thank Bob
Kowalkki, Fapba Sadqp, Paolo Torron, Evelina Lamma and Nigel Colher and
anonym ous referees for comstractive comments on the paper.

References

1. Fitting, M. C., “A Kripke/Kleene Semantics for Logic Programs”, Journal of Logic
Programming, Vol 2. pp. 295 — 312 (1985).

2. Golden, K., Etzioni, O., and Weld, D., “Omnipotence Without Omniscience: Effi-
cient Sensor Management for Planning”, Proc. of AAAI-94, pp. 1048 — 1054 (1994).

3. Levesque, H, Reiter R., Lesperance, Y., Lin F., and Scherl R., “GOLOG: A Logic
Programming Language for Dynamic Domains”, Journal of Logic Programming,
31, pp. 59 — 84 (1997).

4. Hayashi, H., Cho, K., and Ohsuga, A., “Mobile Agents and Logic Programming”,
Proc. of Mobile Agents 2002, pp. 32 — 46 (2002).

5. Hayashi H., Cho K., and Ohsuga A., ” A New HTN Planning Framework for Agents
in Dynamic Environments”, Computational Logic in Multi-Agent Systems, CLIMA
IV, Revised selected and invited papers, LNAT 3259, pp. 108 — 133 (2004).

6. Kakas, A. C., Kowalski, R., and Toni, F., “The Role of Abduction in Logic Pro-
gramming”, Handbook of Logic in Artificial Intelligence and Logic Programming
5, pages 235-324, D.M. Gabbay, C.J. Hogger and J.A. Robinson eds., Oxford Uni-
versity Press (1998)

7. Knoblock, C. A., “Planning, Executing, Sensing, and Replanning for Information
Gathering”, Proc. of IJCAI’95, pp. 1686 — 1693 (1995).

8. Kowalski, R.A., and Sadri, F., “From Logic Programming towards Multi-agent
Systems”, Annals of Mathematics and Artificial Intelligence, Vol. 25, pp. 391 —
419 (1999).

9. Nebel, B., Koehler, J., “Plan Reuse Versus Plan Generation: A Theoretical and
Empirical Analysis”, Artif. Intell., 76(1-2), pp. 427 — 454 (1995).

10. Przymusinski, T., “The Well-Founded Semantics Coincides with the Three-Valued
Stable Semantics”, Fundamenta Informaticae 13 (4), pp. 445 — 463 (1990).

11. Satoh, K., “All’s Well that Ends Well — A Proposal of Global Abduction -, Pro-
ceedings of the Tenth International Workshop on Non-Monotonic Reasoning, pp.
360 — 367 (2004).

12.

13.

An Application of Global Abduction to an Information Agent 229

Shanahan, M. P., “Reinventing Shakey”, Jack Minker (ed.), Logic-Based Artificial
Intelligence, Kluwer Academic, pp. 233253 (2000)

Thielscher, M., “The Qualification Problem: A Solution to the Problem of Anoma-
lous Models”, Artificial Intelligence, Vol. 131, No. 1-2, pp. 1-37 (2001).

Planning Partially for Situated Agents

Paclo Mancaellal, Fapba Sadp?, Giacom o Terem!, and Francesca Tom'?2

! University of Pisa, Pisa, Italy
{paolo, terreni, toni}@di.unipi.it
2 Department of Computing, Imperial College London, UK
{fs, ft}@doc.ic.ac.uk

Abstract. In recent years, within the planning literature there has been
a departure from approaches computing total plans for given goals, in
favour of approaches computing partial plans. Total plans can be seen as
(partially ordered) sets of actions which, if executed successfully, would
lead to the achievement of the goals. Partial plans, instead, can be seen as
(partially ordered) sets of actions which, if executed successfully, would
contribute to the achievement of the goals, subject to the achievement of
further sub-goals. Planning partially (namely computing partial plans for
goals) is useful (or even necessary) for a number of reasons: (i) because
the planning agent is resource-bounded, (ii) because the agent has in-
complete and possibly incorrect knowledge of the environment in which
it is situated, (iii) because this environment is highly dynamic. In this
paper, we propose a framework to design situated agents capable of plan-
ning partially. The framework is based upon the specification of planning
problems via an abductive variant of the event calculus.

1 Introduction

Conventional GOFAI plannes and planmng techm®ues (e.g. [1]) wely wpon a
number of assump t1o1s: (1) that the plannmng agent can devote as many res ouyces
as re¥uired o the planning task, and thus 1t can keep on planning until a total
plan for some given goals 18 obtained, (1) that the knowledge of the agent 1
complete and correct at the planmng tme, and (1) that the environment 1n
which the agent 15 situated will not change between the planning time and the
tme of execution of the plan, and thus the plan will be dijectly execusable, thus
leading to achieving the goals 1t 18 meant to achieve. These assumptiors are
unrealstic 1n m et cases where planning 18 wed, e.g. when the planning agent
15 a robot 1n a dynamic physical environment.

A number of app roaches have been p rp ssed 1n the hiterature to cgpe with
the lmitatiors of GOFAI planness, staping fron ealdy work on hiepajchical
planning. In this paper, we p resent an app roach toplanning wheeby the plan-
ning agent generates p ossibly partial plans, namely (pagially ordered) sets of
actiors which, if executed successfully, would contribute o the achievement of
the goals, subject to the achievement of fugher sub-goals. A pashial plan, like a
hiepachical plan, 13 obtained by decomp ss1k10n of top-level goals. A pagial plan

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 230-248, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Planning Partially for Situated Agents 231

corsists of sub-goals, that still need to be planned for, and actions, that can be
diectly executed, subject to theiy preconditions holding. Pecondisiors are also
pars of pagial plams, and they need plannng for before the actiors can be exe-
cuted. Within our app roach, the decomp s1t10n of tgp-level goals, sub-goals and
p reconditiorns 1nto total plams 1 1nte deaved with the observation of the environ-
ment 1n which the agent 1s situated, Via a sensing cap ability of the agent. Sersed
changes 1n the environment ae assimilated within the planmng knowledge base
of the agent. Curently, this assimilation 13 done @they stightforwadly, by
adding the semsed 1nfopmation to the planmng knowledge base and, if incorsis-
tent with 1, by “drpping (mphcily) the existing belefs 1n this knowledge
base that lead to the incormsistency. Thus, our app roach rehes up on full tyust
up on the semsing cap ability of the agent. ObseVations from the envVironment 1n
turn might lead to the need $o reVvise the curently held pagial plan, because as
a comse®uence of the observatiors the agent notices that sgme t-level goals,
sub-goals orp reconditiors alyeady hold, or that they need to be e-planned for,
or that they will never hold.

We adgpt a novel vapant of the event calculus [10], based up on abduction, to
€p resent the planning knowledge base of agents, which allows topefoin paial
planning and to assimilate observatiors from the environment (1n the simple
manner descpabed above). We 1ep 1esent sqp-level goals, sub-goals, p reconditions
and actioms 1n the language of the event calculus. We mp e a tree structure
ovVer t-level goals, sub-goals, p leconditiors and actiors $osupp oré the evision
of paptial plars after observatiors and because of the passage of t1me. We define
the behaviour of the planmng agent Via a sense — revise — plan — execute hfe-
cycle, which rehes up on (state) transitions (for sersing, revision, planning and
action execution) and selection functions to select 1ntelhigently s-level goals,
sub-goals and p reconditiors soplan for and actiors to be executed. A vapans of
the app roach descubed here has been used within KGP agents [7, 2] and eali ed
within the p rototyp e mplementasion PROSOCS [19] of KGP agents.

The papers ogamsed as follows. Insection 2 we g1ve some background on
abductive logic p rogramming with comstaints, since the event calculus-based
planmng knowledge base of agents we adgt 15 a theory 1n this framework. In
section 3 we g1ve the planmng knowledge base. Insection 4 we define ourpatial
plams and the cycle of planmng agents. In section 5 we define the 1ndividual
tarmsitions. Insection 6 we define the selection functiors. Insection 7 we give a
smp le examp le. Insection 8 we evaluate our app roach agaimst related work and
conclude.

2 Background: Abductive Logic Programming with
Constraints

We buefly jecall the framework of Abductive Logic Programming (ALP) for
knowledge 1ep resentation and reasomng [8], which undeies ourplanmng tech-
meue. An abductive logic program 1 a tuple (P, A, I) whee:

232 P. Mancarella et al.

— P 18 a normal logic program, namely a set of yules (clauses) of the fomm
H «— Lq,...,L, with H atom, Lq,..., L, litemals, and n > 0. Literals can
bep ss181ve, namely atoms, or negative, namely of the foyn not B, where B 1
an aton. The negationsymbol not indicates negation as failure. All vapables
in H, L; aje mphcitly umvesally quantified, with scope the entire yule. H
15 called the head and Lq,... L, 18 called the body of a pule. If n = 0, then
the yule 15 called a fact.

— A s aset of abducible predicates 1n the language of P, not occurpng in the
head of any clause of P (without Iss of generahty, see [8]). Atoms whese
p redicate 18 abducible aje referred vo as abducible atoms orsmply abducibles.

— I 18 aset of integrity constraints, that 13, aset of sentences 1n the language of
P. All the 1ntegnty corstaints 1n this paper will have the mphicative fom
Ly,...,L,= A1V...VA,, (n>0,m > 1)WheIeLiaIehteralsl,Aj areatons
(p ss1bly shespecial atom false). All vapables 1n the integaty corst raints are
mp heitly umvesally @uantified fron the outside, except for vapables occur-
nng only inthe head A1 V...V A,,, which ae mp heitly existentially @uantified
withscgpe the head. Ly, ..., L, 15 referred 1o as the body.

Given an abductive logicp rogram (P, A, I) and a fopmula (query/observation/
goal) @, which 18 an (mplicitly existentially #uantified) conjunction of hiteyals
1n the language of the abductive logic p rogram, the pujp ose of abduction 15 to
find a (p ssibly mimmal) set of (ground) abducible atoms A which, sogesher
with P, “entaiB (an app rp nate ground 1rstantiasion of) @, with respect to
some notion of “entailmerit that the language of P 15 e®upped with, and such
that this extersion of P “satsfid [(see [8] forp ossible notioms of 1ntegpty
corstraint “satisfactioh). Here, the notion of “entailmerfi depends on the se-
mantics ass ociated with the logic p rogram P (there aye many different p gsible
choices forsuch semantics [8]). More fomnally and concetely, given a query Q,
aset of (ground) abducible atoms A, and a vapable substitution 6 for the van-
ables 1n @, the pair (4,0) 18 a (basic) abductive answer for @, with yespect to
an abductive logicp rogram (P, A, I), ff PUA E;pQ0, and PUA |Eppl, whee
Erp 15 a chesen semaniics for logic p rogramming. In this papey, we will not
conmit o any such semantics.

The framework of ALP canbe usefully extended tohandle corst yainsp redicates
1n thesame way Corst raint Logic Programming (CLP) [6] extends logicp rog am-
ming. This extersionallows todeal with non-ground abducibles, needed tosupp ot
ourplanmng app roach. The CLP frameworks defined overap agicularst puctue
corssting of domain D(R) and aset of corst rains p redicates which includes e®ual-
1ty, togetherwith anassignment of yelatiors on D(R) foreach comst yaint p redicate.
The st pucture 18 eupp ed with a notion of R-satsfiability. Inthis paper, the con-
straint p redicates will be <, <, >, <, =, #, but we will not commit toany concete
stuctuye fortheirintep retation. Givena (set of) comstaints C, = C willstand
forC s R-satsfiable, and o =g C, forsome grounding o of the vapables of C over
D(R), willssand for C 18 R-satsfied via o.

! If n =0, then L1, ..., L, represents the special atom true.

Planning Partially for Situated Agents 233

The rales of a corstaint logic p rogram P take the same fopn as the yules 1n
conVentional logic p rogramming, but with corstain$s occurpng 1n the body of
rles. Smilady, P and I 1n an abductive logic p rogram might have corstains
1n their bodies. The semantics of a logic p rogam with corstaints 15 obtained by
combimng the logic p rog amming semantics = p and R-satsfiabihty [6]. Below,
we will jefer $osuch a combined semantics as = pw)-

The notion of basic abductive arswer can be extended to 1ncop orate con-
straint handhing as follows. Given a queyy @ (p ssibly with corstaints), aset A
of (p s1bly non-ground) abducible atoms, and aset C' of (p #si1bly non-ground)
corstrainss, the pair (A, C) s an abductive answer with constraints for @, with
spect to an abductive logic p rogram with comstunts (P, A, I), with the con-
straimts 1msep reved on R, ff for all groundings o for the vapables 1n Q, A, C
such that o g C then, (1) PU Ao Frpw) Qo, and (1) PU Ao Erpwy 1.

In the sequel, we will use the following extended notion of abductive arswer.
Given an abductive logic p rogram (with corstunts) (P, A, I), a query Q (with
corstaints), an 1mtial set of (p wsibly non-ground) abducible atoms Ay and an
1misial set of (p s1bly non-ground) comstaint atoms Cy, an abductive answer for
Q, with yespect to (P, A, I), Ay, Co, 5 apair (A,C) such that AN 4y = {},
CNCy={}, and (AU Ay,CUCH) 15 an abductive amswer with comstainss for
Q, with yespect to (P, A, I).

In abductive logic p rogramming (with corstiaints), abductive arswes are
computed Via abductive proof procedures, which typically extend SLD-es olution,
p roviding the comp utational backbone unde rneath m &% logic p rogramming sys-
tems, 1n oyder to check and enforce 1mtegpty comstaint satisfaction, the gen-
epation of abducible atoms, and the sasisfiabilivy of corstint atoms (if any).
There ate a number of such p rocedues 1n the liteyasuse, e.g. CIFF [4,3]. Any
such (correct) p rocedure could be adgted to obtain a concrete plannmng system
based up on our app roach. Within KGP agenss [7,19] we have adgted CIFF to
perdfom the planning tasks along the lines descpbed 1n this paper.

3 Representing a Planning Domain

In ouy framework, a planmng p roblem 1s specified within the framework of the
event calculus (EC) for 1eas oning about actiors, events and changes [10], 1n te jms
of an abductive logic p rogram with cormstaints K Bpian = (Ppian, Apian, Ipian)
and an ordinayy logic p rogram K By,.. The EC allows to 1€p esent a wide vap-
ety of phendnena, including geratiors with indirect effects, non-detemimstic
geasiors, and concurent geasiors [15]. A number of abductive vapants of
the EC have beenp rgp ssed to deal with planning p roblems. Here, we p rop ose a
novel Vapant K Bpjgn, somewhat 118p1red by the E-language of [9], vo allow sit-
uated agents to genepate paial plars 1n a dynamic environmens. In a natshell,
the conventional EC allows to wpte meta-logic p rograms which” talk abous
object-level concepts of fluents, operations, and time points. We allow Ayerts
to be p w1t1ve, 1ndicated e.g. as F', or negative, indicated e.g. as —F. Fluent
literals will be indicated e.g. as L. The main metap redicates of the fopmahsm

234 P. Mancarella et al.

are: holds_at(L,T) (a flyent teral L holds at a tme T), clipped(Ty, F,Ts) (a
flyert F s clipped - from holding $o0 not holding - between a time 77 and a time
T5), declipped(Ty, F, 1) (a flyers F s declipped - from not holding o holding -
between a time 77 and a tme T5), initially(L) (a fluent litejal L holds at the
1tial tmme, say tme 0), happens(O,T) (an geasion/action O happers at a
tme T), initiates(O, T, F) (a fluens F stams to hold after an @ermtion O at
tme T') and terminates(O,T,F) (a fluent F ceases 10 hold after an @ eration
O at tme T). Roughly speaking, 1n a planmng setting the last two p redicates
1ep resent the cause-effects links between @ ejatiors and ﬂuents 1n the m odelled
wordd. We will also use a metap jedicate precondition(O, L) (the fle s Iitepal
L 18 one of the p reconditiors for the executabihity of the gemation O). In our
noVvel vapant we als o use executed and observed p redicates to deal with dynamic
enVironments and the assume_holds p redicate 1o allow forpariial planning.

We now give KBpian. Ppian corsists of domain-independent and domain-
dependent rules. The basic domain-independent rules, adapted from the opginal
EC, ase:

holds_at(F,Ty) — happens(O,Ty),initiates(O, Ty, F),

Ty < Ty, — clipped(Ty, F, Ty)
holds_at(—F,Ty) < happens(O,Ty), terminates(O, Ty, F),
T, < Ty, — declipped(Ty, F, Ts)

holds_at(F,T) « initially(F),0 < T, - clipped(0, F,T)

holds_at(—F,T) « initially(—F),0 < T, — declipped(0, F,T)

clipped(Th, F,Ts) <« happens(O, T'), terminates(O, T, F), Ty <T < Ty

declipped(Ty, F,Ts) < happens(O, T),initiates(O, T, F), Ty <T < Ty

The domain-dependent rules define the initiates, terminates, and initially
p redicates. We show a simple example for such pules within the blocks-world
donain.

Ezample 1. The domain dep endent yules forthe mv(X,Y) g erationin the block
wordd domain, whese effects aje tomove block X omso block Y, aje the following:
initiates(mu(X,Y), T,on(X,Y))
terminates(mu(X,Y), T, clear(Y))
terminates(mu(X,Y), T,on(X, Z)) < holds_at(on(X, Z),T),Y # Z
initiates(mv(X,Y), T, clear(Z)) « holds_at(on(X, Z2),T),Y # Z
namely the mv(X,Y) geration initiates block X to be on block Y and termi-
nates Y being clear. MojeoVer, if block X was on a block Z, the ¢emation mv
terminates this relation and initiates block Z being clear.

The conditiors for the yules defimng initiates and terminates can be seen as
p reconditiors for the effects of the gperation (e.g. mv 1n the eather example) to
be established. Conditiors for the executability of ¢ eratiors aje sp ecified within
K By, which comssts of aset of pules defimng the p redicate precondition.

Ezample 2. The p reconditiors for the executability of geration mv(X,Y) are
that both X and Y aje cleay, namely:
precondition(mu(X,Y), clear(X)) precondition(mv(X,Y), clear(Y))
O

Planning Partially for Situated Agents 235

In order to accomm odate (partial) planmng we will assume that the domain-
independent par 1n Ppiqpn also contairs the pules:

happens(O,T) «— assume_happens(O,T)

holds_at(L,T) <« assume_holds(L,T)
happen and a flyens can be made to hold smply by assuming them, wheye
assume_happens and assume_holds are the only p redicates 1n Apjgn 1n K Bpjgn.
This supp orts parhial planmng as follows. We will see that actiors 1n ourspec-
fication amount to atgns 1n the abducible p redicate assume_happens: thus,
abducing an atom 1n this p redicate amounts to planning to execute the corre-
sp onding action. Mojeover, as yet urplanned for, sub-goals 1n oursp ecification of
pagtial plars amount to atoms 1n the abducible p redicate assume_holds(L,T):
abducing an atom 1n this p redicate indicates that fugherplannmng s needed for
the corresp onding sub-goal.

Ipian 10 KBpan contalrs the following domain-indep endent 1nfeguty con-
Stalms:

holds_at(F,T), holds_at(—F,T) = false

assume_happens(A,T),not executed(A,T), timenow(T) =T > T’
namely a "uent and 18 negation cannot hold at the same time and when assum-
1ng (planmng) that an action will happ en, we need $o enforce 18 $0 be executable
1n the futuye.

As we will see 1nsection 4, a concrete plannmng p roblem 15 1nfluenced (am ongst
otherthings) by a narrative of evenss, which, unlike K B4y, and K Bpye, changes
oVer the hife-cycle of the agent. We referto the agent’s 1ep resentasion of this nar
ative as K By. We assume that KBy 1ep resents events Via p redicates executed
and observed, e.g., the K By of an agent 1n the blocks-woidd domain with a and
b as two blocks, might comtain:

executed(muv(a,b),3) observed(—on(b,a),10) observed(ag, mv(c,d),3,5)
namely the agent has ezecuted a mv(a,b) geration at tme 3, the agent has
observed that —on(b,a) holds at time 10 and the agent has observed at time 5
that another agent ag has moved block ¢ onto block d at time 3. Obsevations
are drawn, Via sp ecific sersing capabihities of agemss, fyon the environment 1n
which they are situated, and are yecorded 1n KBy, as aye recopds of actions
executed by the agent 1tself. To allow agents to daw conclusiors, Via the EC,
from the contents of K By the following bridge rules aye also contained 1n the
domain indep endent pales of Pplan

clipped(Th, F,To) « observed(—F,T),T1 <T < Ty

declipped(Th, F, Ts) < observed(F,T), Ty <T < Ty

holds_at(F,Ty) — observed(F Ty), Ty < T, clipped(Th, F, T5)

holds_at(—~F,Ty) « observed(—F,Ty),Ty < Ty, declipped(Ty, F,Ts)

happens(O,T) — executed(O,T)

happens(O,T) — observed(A, 0,7, 7T)

Note that we assume that the value of a fluens liteal 1s changed according
1o observatiors only from the moment the observatiors ae made, and actiors
by otheragents have effects only from the time obsevatiors ae made that they
have been executed, rathey than from the execution tmme 1self. These choices

1e. an ¢pemtion can be made to

236 P. Mancarella et al.

are dictated by the ationale that observasiors can only have effects from the
moment the planning agent makes them.

4 Representing Planning Problems and the Life-Cycle of
Agents

Given a planning domain and aset of (§gp-level) goals Goals held by the agent,
each of the fopn holds_at(L,T), we 1ep resent a partial plan for Goals as a typle
(Strategy, Parent, TC), whee

— Strategy s aset of subgoals and preconditions, each of the foim holds_at(L,T),
and of actions, each of the foin assume_happens(L,T); each T' of goals, sub-
goals, p reconditiors and actiors 13 existensially @uangified 1n the context of
the goals and the pagial plan; each such 7" 15 um®ue as we shall see 1n
section 5; thus, such time vapable um®uely 1dentifies goals, subgoals, p re-
conditiors and actiors;

— Parent 1 a function from Strategy to Goals U Strategy, inducing a tree
structure overthe Goals and the Strategy; the root of this t1ee 18 the special
symbol L, 1ts child jen aye all the goals 1n Goals, and the childyen of any other
node 1n the t1ee 1 the set of all subgoals /p reconditiors /actiors which ae
mapp ed, Via Parent, onto the node; as weshall see insection 5, p reconditions
can only be child jen of actiors, wheeas subgoeals and actiors can be childyen
of goals, subgoals orp jeconditiors;

— TC s aset of temporal constraints over the times of goals, subgoals, p recon-
ditiors and actiors 1n Strategy, namely corstaint atoms 1n the language of
KBplan .

ROOT L
G1 /\ G2
holds_at(on(a,b),T1) holds_at(on(a,b), Tz)

Al
assume_happens(muv(a,b), T3)

SG1 SG2
holds_at(clear(a),Ts) holds_at(clear(b),Ts)

Above we show a simple tiee styuctue (where a Gn 1ep esents a goal, an
SGn 1ep resents a subgoal and an An yep 1esents an action) for the blocks wodd
domain, for the example given later1n Section 7, to which we jemand for details.

In the se®uel, we will refertoany of goals, subgoals, p reconditions and actioms
as nodes. MoreoVer, with an abuse of notation, we will 1ep resent nodes N 1n Goals
and Strategy as paip (holds_at(L,T), Pt) and (assume_happens(O,T), Pt),
wheye Pt = Parent(N), and we will omit mensioning Parent inparsial plars.

Planning Partially for Situated Agents 237

Given a planning domain, we rep yeSent a concrete planning p roblem, at a
ceppain sme 7 (%0 be 1ntep reted as the curent tmme), Via a notion of state
defined below. Then, the planmng p rocess am ounts to a se¥uence of such states,
at 1incremental t1mes, corresp onding to the agent’s hfe-cycle.

Definition 1. Anagent’sstase attimer isatuple (K By, X, Goals, Strategy, TC),
where

K By is the recorded set of observations and executed operators (up until T);
— X is the set of all bindings T = X, where T is the time variable associated
with some action recorded as having been executed by the agent itself within
K Bgy, with the associated execution time X ;

Goals is the set of (currently unachieved) goals, held by the agent at time T;
(Strategy, TC) is a partial plan for Goals, held by the agent at time T;

Below, by the tiee coresp onding to a state we mean the tyee corresp onding
t0 the Goals and Strategy 1n the state, and to a node of the t1ee to 1indicate an
element of Strategy U Goals, thus excluding L.

We now 1nt roduce the concepts of initial state and final state. An1mtial state
18 astate of the fomn ({},{}, Goals, {},TC), where TC are the given temp oral
corstaimts for Goals. The tiee Trg coresp onding to an 1mtial state S 15 a
two-level §1ee with root L and all the goals 1n Goals as the childyen of L.

A final state can be either a success state or a failure state. A success siate
18 astate of the fomm (KB, X, {},{},TC).

A failuse state 15 astate of the fopn: (K By, X, @, {}, TC), whee the symbol
© 1ndicates that there 13 no way to achieve one of the 1mtial goals. 2

In our framework, an agent which wants toplan in order to achieve 1ts goals
behaves according to a life-cycle which 15 an adaptation of the classical sense -
plan - execute cycle. Concetely, such a life-cycle can be seen as the repetition
of a seffuence of steps

sense — revise — plan — execute
staging fron an 1mtial state uniil a final state 13 jeached. In the next section
we show the specification of the vapous steps, 1n the form of state transitions.
Thus, the hfe-cycle of the planmng agent can be e®uated to a se®uence of states,
each at a specific time 7. The coresp onding tee Vapes dunng the hfe-cycle of
the agent, by 1rsepding and deleting nodes, as specified 1n the next section.

We will use the following notation. Given a state S, with 18s corresp onding
tee Trg:

— the set of siblings of a node N € Trg of the foqm (_, Pt) 15 the set
Siblings(N,Trg) ={N' € Trg | N' = (_, Pt)}.

— the set of preconditions of an action A of the fom (assume_happens(O,T),
Pty s theset Pre(A,Trg) ={P €Trs | P=(,A)}.

2 This is an arbitrary decision, and we could have defined a failure state as one where
there is no way to achieve all the goals, and a success state as one where at least
one goal can be achieved.

238 P. Mancarella et al.

5 Transitions Specification

Here we g1ve the sp ecification of the state tamsitiors dete mmimng the hife-cycle
of the planmng agent. We referto these tramsitiors as the sensing transition, the
planning transition, the execution transition, and the revision transition. The
planning and execution tarsitions take 1puts that are computed Via selection
functions, defined 1nsection 6.

5.1 Sensing Transition

Given a state S = (K By, X, Goals, Strategy, TC) at a time 7, the application
of asersing tramibion at 7 leads to astate S' = (KB, X, Goals, Strategy, TC'),
wheye KB, 15 obtained fyom K By by adding any observatiors on ﬂuent Iiteals
at 7 and any observatiors at 7 that an gemation has been executed by another
agent (at an eagiertime). These observasiors are obtained by calling the sensing
capability of she agent at time 7 which we refer to as =, , which accesses the
enVironment of the agent.

Definition 2. Given a state S = (K By, X, Goals, Strategy, TC) at a time 7, if
Elpw LA Al Aar AL Aap,
where n+m > 0, each l; is a fluent literal and each a; is an operation o; executed

by agent ag; at some earlier time 7;, then the sersing tars1810n leads to a state
S" = (KB{, X, Goals, Strategy, TC) where:

K B{, = KBy U{observed(ly,7) U...U observed(l,,)}
U{observed(agy, 01, 71,T), ..., observed(agm, Om, Tm,T)}-

5.2 Planning Transition

The planning tm@amsition ehes up on a planning selection function SelP(S,T)
which, given as 1put a state S at time 7 eturs a (single) goal, subgoal orp re-
condition to be planned for. The extersion wheeby muliple goals, subgoals and
p reconditiors are returned by the selection function 15 stughtforward. In this
section, we assume that such aselection function s gi1ven (ap sssible sp ecificasion
18 p rovided 1n the next section).

We 1ntroduce the following useful notation which will be helpful 1n defin-
ing the planning tamsikion. Let S = (K By, X, Goals, Strategy, TC) be a state.
Then:

— forany set X C Goals U Strategy, by X (X) we denocte the set obtained by
applying to each element of X the irstantiatiors p rovided by X,

— g1ven a node G € Goals U Strategy, by Rest(G) we denocte the set
Rest(GQ) = Strategy(X) U Goals(X) — G(X);

— givena node N € GoalsUStrategy, we dencte by A(N) the abducible version
of N, namely

A(N) = assume_happens(O,T) 1if N = (assume_happens(O,T),)

assume_holds(L,T) if N = (holds_at(L,T),)
This notation s hfted to any set X of nodes as usual, 1.e. A(X) = |J A(N).
NeX

Planning Partially for Situated Agents 239

Intwiively, given a state S = (K By, X, Goals, Strategy, TC), the planmng
trarsition bulds a (parhal) plan for a given goal, subgoal orp recondition G 1n
tens of an abductive arswer, as defined 1n section 2, and updates the state
accordingly. More p recisely, an abductive arswer1s computed with espect to:

— the abductive logicp rogram with corst s K Byjqp, 88 defined 1n Section 3;

— the 1mtal quey @ g1ven by G;

the imtial set of abducibles Ay g1ven by the abducible vession of the curent

tree (except for G), namely A(Rest(G));

— the 1mitial set of corstaints Cy given by the curent set of corstaints in the
state, along with the 1mstantiatiors 1n X', namely TC' U Y.

Once such abductive arswer, say (A, C'), 15 obtained, the planmng $arsision
leads to a new state S’ = (K By, X, Goals, Strategy’, TC") whee Strategy’ 1s
Strategy augmented with the actions, goals and p reconditiors depved from A,
and TC’ 18 TC augmented with C’ and with switable equalities on the tme
vapables of the p yeconditiors of actiors added to the state. We assume that
the abducibles 1n A do not shaye time vapables®. This 18 fognalised 1n the next
defimtion.

Definition 3. Given a state S = (K By, X, Goals, Strategy, TC) at a time T
and the node G = SelP(S, 1), let (A,C") be an abductive answer for the query
G with respect to the abductive logic program (with constraints) K Bpan, and
initial sets Ag = A(Rest(G)) and Cy = TC U X. Then, the planning §asision
leads to a state S = (K By, X, Goals, Strategy’, TC") where Strategy’ and TC'
are obtained by augmenting Strategy and TC as follows:

— for each assume_holds(L,T) € A, (holds_at(L,T),G) is added in Strategy’
— for each assume_happens(O,T) € A
o A= (happens(O,T),G) is added in Strategy’, and
e for each P such that precondition(happens(O,T),P) € KBy, let T,
be a fresh time variable; then:
(holds_at(P,Tp), A) is added in Strategy’, and
Tp =T is added in TC'
e C' is added in TC'
Note that this tamsition enforces that p reconditiors of actiors hold at the time
of the execution of the actiors, by adding such p reconditiors to Strategy’ s o that
they will need planmng for. Note also that, when 1nt roducing p reconditiors, we
need to make suje that theiy time vapable 13 new, and elate this, within TC’,
to the t1me vapable of the action whase p reconditiors we are enforcing.

5.3 Execution Transition

Smilafdy to the planmng $@msition, the execution $@armsition ehes wpon an
execution selection function SelE(S,T) which, given a state S and a tme 7,

3 Notice that this is not a restrictive assumption, since shared variables can be renamed
and suitable equalities can be added to the constraints in C’.

240 P. Mancarella et al.

eduyrs a (single) action to be executed (ap ossible sp ecification of this selecéion
function 15 p rovided 1n the next section). The extersion to the case of muliple
actiors 15 stughiforwad.

Definition 4. Given a state S = (K By, X, Goals, Strategy, TC) at a time T and
an action A of the form (assume_happens(O,T), Pt) such that A = SelE(S,7),
then the execusion tjars1dion leads to a state ' = (K B}y, X', Goals, Strategy, TC)
where:

— KB} = KBy U {executed(O,7)}
- XY =Xu{T=r1}

Note that we are mphcitly assuming that actiors are ground except for their
tme vapable. The extersion to deal with other Vapables 1n actiors 15 staught-
fOrwaId.

Executed actiors aye eliminated from states by the revision trarmsition, p re-
sented nexs.

5.4 Revision Transition

Tospecify the revision tamsition we need o 1nf roduce sone useful concepts. A
node 15 said to be obsolete wit a state S at a sime 7 for any of the following
1€aS 0151

— The node 13 a goal, subgoal or p recondition node and the node iself 18
achieved.

— Thepayent of the node 15 obsolete wit S and 7. Indeed, 1f a node 15 obs olete
there 15 no reason toplan for or execute any of 1ts childien (or descendants).

Thus, obsolete nodes am ount to achieved goals, subgoals and p reconditioms
and actiors that have been 1nt roduced for them (and thus become jedundant).

Definition 5. Given a state S = (K By, X, Goals, Strategy, TC) at a time T,
we define the set of obsolete nodes Obsolete(S,T) as the set composed of each
node N € Strategy U Goals of the form N = (X, Pt) such that:

— Pt € Obsolete(S,T) or
— X = holds_at(L, T)andPyian UK By = pw) ¥ Aholds_at(L, T)NT < 7ANTC

A node 15 timed out wit astate S at a time 7 forany of the following eas ors:

— It has not been achieved vet, and thee 15 no way to achieve 1t 1n the futue
due to temp oyal corstaints.

— Iis parent or one of 14 siblings 15 timed out wit S and 7. Indeed, if either
the paent or a sibling of the node 13 timed ous, thee 15 no reason to keep
the node for later planmng. This condition 13 not mp sed 1f the node 13 a
tp-level goal because tp-level goals do not influence each other (except Via
p oss1ble temp oral corstraints on their tume vapables).

Planning Partially for Situated Agents 241

Definition 6. Given a state S = (K By, X, Goals, Strategy, TC) at a time T,
we define the set of timed out nodes TimedOut(S,T) as the set composed of
each node N € Strategy U Goals of the form {(holds_at(L,T), Pt) such that:

— N & Obsolete(S,7) and feg X ANTC AT > 1 or
— Pt € TimedOut(S,7) or
— N & Goals andthereezistsN' € Siblings(N) suchthatN' € TimedOut(S, T)).

Using the above definitiors we now define the jevision $yamsision which,
roughly sp eaking, removes obsolete and timed out nodes.

Definition 7. Given a state S = (K By, X, Goals, Strategy, TC) at a time T,
the evision syarmsition leads to a state S’ = (K By, X, Goals', Strategy’, TC)
where, for each N € Strategy’ U Goals':

— N & TimedOut(S,), and

if N = (assume_happens(O,T), _) thenitisnotthe case thatexecuted(O, ") €
KBy andT =7 € X, and

if N € Obsolete(S, 1) then Parent(N) = (assume_happens(O,T),_), and
Parent(N) € Goals' U Strategy’.

Intwtively, each timed out node, each obsolete node and each executed ac-
t1on has to be eliminated from the tee. The only exception 1 1€p resented by
p reconditions. Indeed, obsolete p recondition at eVision time are not elminated
because they must hold at execution time. If an obsoclete p jecondition p for an
action a 18 elminated at eVision time due to the fact that 1t holds at that time,
something could happ en later on (e.g. an external change oran actionp efommed
by some other agent or by the agens 1tself) that invalidates p so that 18 does not
hold when a 15 executed. Note that we could also mp ®e for the temp oal con-
stiaints to be siplhified at evision time, but this 13 not necessapy to guaantee
the correctness of our app roach.

6 Selection Functions

The planning and execution tarsitiors e®uie a selection function each. Here,
we g1ve p ssible definitiors for these functiors. Note that we use the teyn func-
t1on lomsely, as the selection randomly yedurs one of p wsibly several candidates.

6.1 Planning Selection Function

Given a state S = (K By, X, Goals, Strategy, TC) at a time 7, the planmng
tars1t1on needs a planning selection function Sel P(S, T) toselect a goal, subgoal
orp recondision G belonging to Goals or Strategy, o be planned for. We define
SelP so that G satisfies the following p rp e fhies:

— neither G nor any ancestor orsibling of G 15 timed out at 7;

— neither G nor an ancestor of G 18 achieved at 7; 1.e. G 15 not obsolete and 1%
does not hold at the curent time;

— noplan for G belongs to0 S.

242 P. Mancarella et al.

Definition 8. Given a state S = (K By, X, Goals, Strategy, TC) at a time T,
the planning selection funcéion SelP(S,) returns a goal, a subgoal or a precon-
dition G = (holds_at(L,T),) such that:

— G & TimedOut (S, 7);
— G ¢ Obsolete(S,T), and it is not the case that
Pyian UK By =ppm) holds_at(L, TYAT =7 ATC A 5
— there exists no G' € Strategy such that G = Parent(G');

Clealy 1t may be p sssible that a number of goals, subgoals and p reconditiors 1n
a state satisfy the above p rgperiies and thus could be selected. We could fugher
1ncop orate a mumber of heupstics to restnct the number of candidates G to be
selected am ongst.

6.2 Execution Selection Function

Given a state S = (K By, X, Goals, Strategy, TC) at a time 7, the execution
tars1tion needs an execution selection function Sel E(S,T) $oselect an action A
1n Strategy to be executed at 7. We define SelF s o that A satisfies the following
P rp edies:

— nerther A nor any ancestor orsibling of A 15 timed out at 7;

all p reconditiors (childien) of A aje satisfied at 7;

no (goal, subgoal orp recondision) ancestor of A 1 satisfied at T;
— A has not been executed yet.

Definition 9. Given a state S = (K By, X, Goals, Strategy, TC) at a time
T, the execution selection function SelE(S,7) returns an action A =
(assume_happens(0O,T),) such that:

A & TimedOut(S,7);

for each P = (holds_at(P,T"), A) € Strategy, P € Obsolete(S’, T)
where S = (K By, X, Goals, Strategy, TC U{T = 7});

A & Obsolete(S,T);

— there exists no ' such that executed(O,7") € KBy and T =71' € X.

Notice that 1n the second condition, we need to add {T' = 7} to the temp oal
corstaint of the state S because p reconditiors have to be checked 1n a state
whee the time of execution of the selected action 15 7. Again, heupstics could
be 1ncojp orated within the execution selection function to restpuct the numbery
of selectable actiors.

7 An Example

In this section we show a simple example of hife-cycle of an agent 1n the blocks-
wodd domain of examples 1 and 2.

Planning Partially for Situated Agents 243

We assume to have thyee blocks, a, b, ¢, all on the table 1mtially. The fopnal-
sation of the 1mtial configuation, using a sp ecial location table, 15 as follows:

initially(on(a, table)), initially(on(b, table)), initially(on(c, table)),

initially(clear(a)), initially(clear (b)), initially(clear(c))

Ouy objective 18 to have a towey with ¢ on b on a by time 20. We can fopmalise
this via tgp-level goals:

G1 = (holds_at(on(b,a),T1), L) Go = (holds_at(on(c,b),Ts), L)
WheIe TCO = {T1 = Tg,Tl S 20}

The following 18 a p ossible hife-cycle of the agent, achieving G; and Gs.

Initial State: Sy = ({},{},{G1,G2},{},TC°)
Time 1 - Sensing Transition: =L, {}
Resulting state: 57 = Sy
Time 2 - Revision Transition: Thee 15 nothing to be jevised at this p oint.
Resulting state: S, = 5
Time 3 - Planning Transition: Assume that SelP(Ss,3) = G;. Let (4,C)
be the abductive amswer wi§ K Bpjan, Ao = {assume_holds(on(c,b),T>)} and
Co = TC?, where A = {assume_happens(mv(b,a),T3)} and C = {T3 < T1}.
Let

Strategy® = { (assume_happens(mv(b,a),Ts),G1) = Ay

(holds_at(clear(a),Ty), A1)
(holds_at(clear(b),Ts), A1) }

TC3 = TCOUC U{Ty =T3,T5 = T3}
Resulting state: S3 = ({},{}, {G1, G2}, Strategy®, TC?)
At this stage the t1ee st puctuse 15 the one given eagierin the picture 1n Section 4.
Time 4 - Execution Transition: as the p jeconditiors of action A; aye both
achieved at this time due o the initially pales 1n K Bpjop, then Ay = SelE(S3,4)
(A; 1 the only action that can be selected at this time). Let

K B§ = {executed(muv(b,a),3)

Y= (T3 =4}
Resulting state: S, = (K B3, X4, {G1, Gz}, Strategy®, TC?)
Time 5 - Sensing Transition: Assume that the sersing cap ability of the agent
forces 1t t0 obserVe that b 15 actually on ¢ at this time and that a 15 cleay, namely

Sne Lon(b, c), —on(b, a), ~on(c, table), ~clear(c), clear(a)}. Basically, thee has

been either a p roblem 11 the execution of A; or an interference by some other
agent. Then,

KB = KBg U { observed(on(b, c),5), observed(—on(b,a),5)
observed(—on(c,table),), observed(—clear(c),5)
observed(clear(a),5)}

Resulting state: S5 = (KBj, X4, {G1, G2}, Strategy®, TC3)

Time 6 - Revision Transition: At this t1me the evision $@amsition deletes
from the stategy the action A; and 185 p reconditiors as A; has been executed.
Resulting state: S = (KB, X4, {G1, G2}, {},TC?)

Time 7 - Planning Transition: Assume that the selected goal 15 again Gq,
SelP(Se,7) = G1. (Note that G 15 againselectable as 18 15 not achieved at time
7.) Smilady as for the p yevious planning $ rarsition, let:

b
)

244 P. Mancarella et al.

Strategy” = { (assume_happens(mv(b,a),T4),G1) = A}
(holds_at(clear(a),Ty), A})
(holds_at(clear(b),T}), AL) }
TC" = TC3U{T} < Ty, T, =T}, Tt = T4}
Resulting state: S; = (KBS, X4, {G1, Ga}, Strategy”, TC)
Time 8 - Execution Transition: as the pieconditiors of action A; ae
both achieved at this tmme, due to the initially rales 1n KBy, and to the
observatiors 1n K By, then A} = SelE(S7,8) (A} 1 the only action that can be
selected at this time). Let
KB = {executed(muv(b,a),8)
8= {T,=8}
Resulting state: Sy = (KBS, X8, {G1,Ga}, Strategy”, TC)
Time 9 - Sensing Transition: =%, {}
Resulting state: Sy = Sy
Time 10 - Revision Transition: At this time the evision tamsition deletes
from the stategy the action A} and 1ts p jeconditiors as A} has been executed.
Resulting state: Sio = (KB§, 28, {G1,Gs}, {},TC")
Time 11 - Planning Transition: Assume that the selected goal 18
SelP(S10,11) = G2. Note that at this time Go 18 the only goal that can be
selected because goal G 13 achieved. Smilafdy as for the pevious plannng
tarsitions, let:
Strategy'! = { (assume_happens(muv(c,b),Tg), Go) = Ay
(holds_at(clear(a),Ty), A2)
(holds_at(clear(b),Tg), A2) }
TCH = TC7U{T6 <Ts,T7 =T, Ts :Tﬁ}
Resulting state: S1o = (KB§, 8, {G1, G2}, Strategy', TC1')
Time 12 - Execution Transition: action A; 18 selecied. Let
KB§? = KB§ U {executed(muv(c,b), 12)
12— Ty =4,T} =8, Ts = 12}
Resulting state: S13 = (KB{?, X2, {G1, Ga}, Strategy'', TC')
Time 13 - Sensing Transition: =2~ {}
Resulting state: S13 = S
Time 14 - Revision Transition: At this time the evision t@amsition deletes
from the stategy the action As and 185 p reconditiors as As has been executed.
MoseoVer as both G7 and G4 are achieved, the yeVision tamsition deletes them
fron the goals leading to a successful final state.
Resulting state: S, = (KB}2, 212 {}, {},TCY).

8 Related Work and Conclusions

Planning has been a Veyy active reseaych and develgppment ajea forsome time.
Systems have been deVelgp ed fora range of app licatiors such as medical, rob ofics
and web services. Many app roaches to planmng have been p rgp ssed (e.g the

Planning Partially for Situated Agents 245

STRIPS language with 148 mp rovements and related state-of-the-ad systems
such as Graphplan [1]). Here we concentate on those clser to our work.

Our app roach to planning 18 based on the abductive event calculus. I 18
thus clesely related to Shanahan’s abduction and event calculus planmng work
[14,15,16,17,18] and to the app roach based on the situation calculus. The lat-
ter foqns the basis of GOLOG [11], an mpeative language mplemented 1n
PROLOG 1ncop orating macro-actiors (as p rocedures) and non-detemimsm.
GOLOG has been shown to be switable for mplementing robot p rograms as
high-level 118t fuctiors 1n dynamic domarrs.

The contpbution of curpaper s 1n descpbing a system that allows pagial
planning and the intedeaving of planning with semsing and executing actiors.
This 1ntegrasion 13 particulady suitable for (p ®sibly resource bounded) agents
situated 1n dynamic environments. Ourpagtial plams, $osone extent, have the
Aavour of the compound actions of Shanahan [16]. If well defined, both ap-
p roaches allow us 1o find execusable actiors @uickly. Howevery, our fopmalisation
18 simpley than [16] as we do not need to use comp ound actiors 1n our theopes
1n order to achieve papial planmng.

Comp ound actiors are also exploted 1n the situation calculus, inpaicular
[12] gives fopmal charactepsatiors of comp ound actiors and theirp reconditiors
and p stconditiors. Investigating how to incop orate them 1n our framework 1s
subject of futue work.

An mp oppant feature of our app roach 15 the 1evision of the plams obtained
by the Revision tjamsition. The t1ee st pactuse 1n the Strategy pat of each agent
state allows an intelligent, select1ve way of revising the (partial) plan. This mears
that, 1if jeplanning becomes necessayy, 18 13 done only for unachieved goals and
subgoals, thus avoiding theé’ replanmng from scyatch method seen 1n [16].

There are 1ssues that we have not addiessed yet. These include ramifica-
t1on p roblems, which aye addyessed 1n [17] whee 18 15 pointed out that the
state-constraints fopmalisasion of amificatiors can lead $o1ncormsstencies. State-
comstaims are of the foym

holds_at(P,T) <« holds_at(Py,T),. .., holds_at(P,,T)

This yule can cause incorsistencies if, at a sime ¢, Py, ..., P, and thus P hold.
But at an eajlier time, say ¢1, =P may hold and 1t 18 not clipped befoe the time
t. As pules of above foin aje needed som odel subgoals, ramification 18 an 1mp or-
tant 1ssue to be addyessed. One way to avad the p roblem of incomsistency could
be to add, for each state comstint of the fogn above, anothey yule of the fopn

declipped(P,T) < holds_at(Py,T),. .., holds_at(P,,T)

This app roach 18 smilar to the one that we have taken 1n the bridge rules of
Section 3, but needs to be futher investigated.

The Sensing transition, descpbed 1n Section 5, 15 1mp ogant for a situated
agent, but 18 pather smplistic. It simply adds the observation to the agent’s
knowledge base and the bridge rules in the knowledge basep e foin s ome mp hicit
conﬁlct s olution. An alternative app roach 18 p resented 1n [16]. This p rop csal
18 that, once an observation 1s made, (p ossibly abductive) explanatiors of 1t are

246 P. Mancarella et al.

sought, thus avading some p ssible incorsistencies and g1ving a pcher account
of causes and effects. This app roach has obvious disadvantages 1n cases whee
obseyvatiors are such that the agent cannot be expected to find explanatiors
for. E.g., 1n a conmumcationscenaro, an agent could obserVe that the network
18 down bus has no way of knowing (or even guessing) why.

Another drawback of our Sersing trarsition 15 that 1t 15 fandom and passive.
The agent collects infojmnation from the environment as a passive observVer. An
active form of sersing 15 descpbed 1n [7,2] whee, as well as p erfopming p hysical
actiors, the agent canperfoin active knowledgep roducing (orsersing) actiors.
Such act1ve sersing actiors do not affect the external environment bus they affect
the agent’s knowledge about the environmens. Such an active sersing action can
be perfomned, for example, to seek infoynation from the environment about
p recondisiors of actiors before they are perfommed or toseek confipnatsion that
an executed action has had 1ts desijed outcome. Active sersing actiors are also
addessed 1n [13] for mp epative GOLOG p yograms where they allow conditional
plams whee conditiors are checked af’ pun-tmeé .

An ssue related to observatioms 15 that of exogenous actions. Our handhng
of observatiors combined with the Revision tarsition seem 1o be effective t0
capture both exogenous actiors and their effects 1n the serse that, if our agent
detects an action ora fact which invalidate aplan orasubplan alyeady executed,
the evisionp roceduse will jeplan forthat pas (and only forthat pa). Another
app roach to0 exogenous (malicious) actiors 15 that 1n [5] where, if exogenous
actiors change the external enviroriment, a jecovey p rocedure 1s perfommed with
which the agent 15 able 10 estore the state to the one before the exogenous event
occurred.

With respect to our framework, drawbacks of that app roach are that a num-
ber of assumptions have been made, 1n pagicular that the agent knows what
kind of exogenous actiors can be done and what their effects aje. Also, this
app roach does not take 1nto account the p gssibility that an exogenous action
can “help the agent t0 achieve 1t goals making cedain subgoals and action
unnecessayy.

Finally, we remark that top rgpedy evaluate our techm®ues, we are studying
fommal jesults such as soundness and completeness and we aye doing p ractical
exp epmentation with the CIFF system [4,3] as the undedying abductive rea-
Soner.

Acknowledgments

This work was pagially funded by the IST p rogramme of the EC, FET undery the
IST-2001-32530 SOCS p roject, within the Global Comp uting p roactive 1mitiat1ve.
The last author was also supp orfed by the Italian MIUR p rogramme “Rientro
de1 ceyvell .

Planning Partially for Situated Agents 247

References

1.

2.

10.

11.

12.

13.

14.

15.

A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90:281-300, 1997.

A. Bracciali, N. Demetriou, U. Endriss, A. Kakas, W. Lu, P. Mancarella, F. Sadri,
K. Stathis, G. Terreni, and F. Toni. The KGP model of agency for global com-
puting: Computational model and prototype implementation. In C. Priami and P.
Quaglia, (eds.): Global Computing: IST/FET International Workshop, GC 200/
Rovereto, Italy, March 9-12, 2004 Revised Selected Papers, LNAI 3267, pp. 340—
367. Springer-Verlag, 2005.

U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic
programming with CIFF: system description. In J.J. Alferes and J. Leite (eds.):
Logics in Artificial Intelligence. European Conference, JELIA 2004, Lisbon, Por-
tugal, September, 27-30, Proceedings, LNAI 3229, pp. 680-684. Springer-Verlag,
2004.

U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof
procedure for abductive logic programming with constraints. In J.J. Alferes and J.
Leite (eds.): Logics in Artificial Intelligence. European Conference, JELIA 2004,
Lisbon, Portugal, September, 27-30, Proceedings, LNAI 3229, pp. 31-43. Springer-
Verlag, 2004.

G. De Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-level
robot programs. In A. G. Cohn, L. K. Schubert, S. C. Shapiro (eds.): Proceedings
of the Sixzth International Conference on Principles of Knowledge Representation
and Reasoning (KR’98), Trento, Italy, June 2-5, pp. 453-465. Morgan Kaufmann,
1998.

J. Jaffar and M.J. Maher. Constraint logic programming: a survey. Journal of
Logic Programming, 19-20:503-582, 1994.

A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In R. Lopez de Mantaras and L. Saitta (eds.): Proceedings of the Sizteenth
European Conference on Artificial Intelligence, Valencia, Spain, pp. 33-37. 10S
Press, August 2004.

A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, (eds.):, Handbook of
Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 235-324. Oxford
University Press, 1998.

A. C. Kakas and R. Miller. A simple declarative language for describing narratives
with ations. Journal of Logic Programming, 31(1-3):157-200, 1997.

R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation
Computing, 4(1):67-95, 1986.

H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl. GOLOG: A
logic programming language for dynamic domains. Journal of Logic Programming,
31(1-3):59-83, 1997.

S. Mcllraith and R. Fadel. Planning with complex actions. In S. Benferhat,
E. Giunchiglia (eds.): 9th International Workshop on Non-Monotonic Reasoning
(NMR 2002), April 19-21, Toulouse, France, Proceedings, pp. 356—-364. 2002.

R. Scherl and H. J. Levesque. Knowledge, action, and the frame problem. Artificial
Intelligence, 144:1-39, 2003.

M. Shanahan. Event calculus planning revisited. In Proceedings of the 4th European
Conference on Planning, LNAI 1348, pp. 390-402. Springer Verlag, 1997.

M. Shanahan. Solving the Frame Problem. MIT Press, 1997.

248 P. Mancarella et al.

16. M. Shanahan. Reinventing shakey. In Working Notes of the 1998 AAAI Fall
Symposium on Cognitive Robotics, pages 125-135, 1998.

17. M. Shanahan. The ramification problem in the event calculus. In T. Dean (ed.):
Proceedings of the Sizteenth International Joint Conference on Artificial Intelli-
gence, Stockholm, Sweden, pages 140-146. Morgan Kaufmann Publishers, 1999.

18. M. Shanahan. Using reactive rules to guide a forward-chaining planner. In Proc.
of the Fourth European Conference on Planning. Springer-Verlag, 2001.

19. K. Stathis, A. C. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.
PROSOCS: a platform for programming software agents in computational logic.
In R. Trappl (ed.): Proceedings of the 17th European Meeting on Cybernetics and
Systems Research, Vol. II, Symposium “From Agent Theory to Agent Implementa-
tion” (AT2AI-4), Vienna, Austria, pp. 523-528. Austrian Society for Cybernetic
Studies, 2004.

Desire-Space Analysis and Action Selection
for Multiple Dynamic Goals

David C. Han and K. Su anne Bayber

The Laboratory for Intelligent Processes and Systems,
Electrical and Computer Engineering,
The University of Texas at Austin,
Austin, TX 78712
{dhan, barber}@lips.utexas.edu

Abstract. Autonomous agents are given the authority to select which
actions they will execute. If the agent behaves rationally, the actions
it selects will be in its own best interests. When addressing multiple
goals, the rational action may not be obvious. Equipping the agents with
decision-theoretic methods allows the agent to mathematically evaluate
the risks, uncertainty, and benefits of the various available courses of
action. Using this evaluation, an agent can determine which goals are
worth achieving, as well as the order in which to achieve those goals.
When the goals of the agent changes, the agent must replan to maintain
rational decision-making. This research uses macro actions to transform
the state space for the agent’s decision problem into the desire space
of the agent. Reasoning in the desire space, the agent can efficiently
maintain rationality in response to addition and removal of goals.

1 Introduction

Decision theory 13 the mathemasical evaluation of psks, unce gainty, and benefits
to calculate the value of alternative choices. Applied to agents, decision theoyy
can fogn the basis for jational action selection. An agent acts jationally if 1%
perfomns actiors that are 1n 185 “best 1imbeestd [1]. The best interests of an
agent corresp ond to the goals an agent holds. Amned with decision theory, an
agent can weigh the jewards to be gained from achieving each of 1ts goals agaimst
the cots of actiors to detegmnine which goals are worth achieving, as well as the
order 1n which to achieve these goals.

OvVer time, the interests of an agent may change, changing the actiors a ra-
t10nal agent should take 1n a g1vensituation. As asmmple example, afteran agent
achieves a goal, 1t may lge 1nteress inpusung that pagicular goal. Addition-
ally, goals may be added, yemoved, orm odified by the designer of that agent or
through 1nteractiors with other agents. Agents, being autonom ous entities, are
given freedom to decide theiyr own couse of action forsatisfying theiy goals.

Detemnining a coupe of action 15 a se€uential decision p roblem, where the
1mtial decision mpacts future decisiors (1.e., the agent must corsider not only
the effects of 1ts actiors 1n the curent state, but also the fufue corse®uences of

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 249-264, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

250 D.C. Han and K.S. Barber

any actiors 1t takes). Futher comp licating the matter, the agent muss corsider
the come®uences of each action 1n relation to each of the goals the agent holds.

Matkov decision p rocesses (MDPs) aje often used $o 1ep resent and reason
about se®uential decisionp roblems. Alyeady suffepnng from the “cuse of dimen-
sionality, application of MDPs to domain p roblems contaimng muliple goals
futher exace hates the comp utational ssues (by adding dimersiors o the state
1¢p resentasion). These additional dimersiors, 1ep resenting the achievement sta-
tus of goals, do not Ieﬂect the behavior of the enviroment, but jather the
internal state of the agent. The behavior of the environment (e.g., the domain
physics) 18 conceptually diffejent from the goals of an agent situated 1n that
envVironmens. It 18 due 1o lmitatiors of the MDP jewaid stjucture that goal
information must be yep yesented as pat of the state descppion.

Whenm oving from theoyy top ractice, p gonties on the charactepstics of the
app roach shift. Taking an engineeing app roach, the concept of gpimality takes
a back seat to the concept of satisficing. Abstaction and estimation aye used
1n the pupwt of computasional efficiency at the expemse of gpimahty. Towads
this end, this work addesses a jestpcted class of MDPs, using simple domairs
to explore complex goal related behavios. Making the assumption that the set
of goals assigned to an agent 18 much smalley than the total set of domainstates,
this eseajch uses macro actions to abstact away the domainphysics, jeasoning
about the desiie space of the agens. As an added benefit, desiie space reasomng
enables efficient compusation of rational behavior in the face of changing goals
forthis class of p roblems. Inmulti-agent systems, an agent cannot negotiate with
other agents without knowing the value of 18s own goals and actiors. Calculation
of Values based on desije analysis p rovide the agent with the knowledge with
which to negotiate with otheragents. Forexample, when following a conve gation
p olicy, as p yesented by Bentahay et. al. 1n this volume [2], an agent can decide,
through desije analysis, whether 18 should accept a commitment or continue
ajgumentatlon orpeiasion.

This pap erp rovides a fopnalp esentasion of thep roblem, a foymulation of the
domain using goal factoring and macro actiors, and algopthms for maintainng
an app roxmmate s olution under dy namic goals.

2 Action Selection

Though very different 1n app roach, a number of app roaches p resented 1n this
volume seek to addyess the same p roblem of agent gemtion in dynamic do-
mairs. Mancaiella et. al. attack much the same p roblem through a @uahtative
app roach [3], compajed to the Quantitative app roach used 1n this paper. Alfeses,
Bant1, and Brogt add ress action descyp s1on up dates through logic p rog ramming
[4], accounting for changes 1n the physics of the domain, which includes goal
m odification.

Planming techm®ues [5] p rovide agents with methods foranaly 1ng the effects
of their capabilities on the envirorment. Inplanning, an agent’s capabilities ase
€p resented as action descpptions and desiyes aje 1ep resented as goals. Classical

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 251

A
¢®*

v

Fig. 1. Navigation Domain Example

planming finds a sefuence of actiors whese execusion will $arsform the curent
state 1nto a goalstate. Although classicalplanmng was not designed to handle dy-
namic envVironments (whee exogenous events can occur), elaboratiors up on the
same basic methods do. Continuous planmng methods [6] allow an agent $o ad-
Just to unexp ected situatiors by intedeaving planning and execution. Decision-
theoretsic planmng, as descpbed by Boutihiey, Dean, and Hanks [7][8], uses MDPs
toperfom this reasoning by allowing a range of reward values. As anotherbene-
fit, MDPs natujally captuie and handle the unceainty 1nherent 1n the dgnain.
Since the s olution to an MDP corsists of ap olicy descpbing the action to take 1n
any g1venstate, MDPs aje suited for adap tation to continvious planning as well.

A MakoV decisionp rocess M 1s a yep resentation of this actionselectionp rob-
lem, corssting of four comp onents: the state space, S = {s1, 82, ..., SN }; actiors
the agent can execute, A = {aq,as,...,ar}; a trarsition funcéion descpbing the
p robability that executing each action a insome state s will jesult 1insome state
s, T:8%xAxS8+—[0,1]; and a yewayd function descubing the value earned by
the agent for reaching each state, R : S +— R. The p roduct of an MDP planning
algopthm 15 apolicy m: .S +— A descpbing what action the agent should execute
for any state 1t may find 1iself 1n.

The class of p roblems addessed 1n this paper Ieﬂects “cet-tomove frame-
works. In ct-tom ove p roblems, each action the agent executes incu s sone cost
c < 0 as part of the reward stpuctue. This p rovides 1incentive for the agent to
reach 115 goal states with the minmmal am ount of movement actions. An examp le
cHt-tomove domainp roblem 15 robot navigation. Figure 1 1llustates the basic
setup of a robot navigation domain. The R 1n the figue shows the location of
the agent 1n the p hysical environment, which 18 1n this case modelled as a Carte-
sian gid. The actiors available to the agent aye the cardinal dijections, north,
south, east, and west. The ct can rep resent resouce usage by the robot as 1%
moves from one location to anothey. The desies of the robot 1n these domairs
are 1¢p resented 1n the eward stypucture. For example, R(s) > 0 for thse states,
s, 1n which the robot achieves 1ts goals.

Macro actiors are wed to combine the p pmitive actiors available to the
agent. Clever use of macro actiors can mp rove comp utational efficiency for
action selection. The remainder of this section discusses the rep resemtation of
macro actlons, the application of macro actiors to goals or subgoals, and the
concept of using macro actiors to eason 1n the desire space of an agent.

252 D.C. Han and K.S. Barber

2.1 Macro Actions

Comp usational efficiency for solving an MDP 15 greatly mpacted by 1ts s1 e.
Factonng has been used to reduce compusation through abstiacting the MDP
into higher level states and actiors. This research makes use of the concept of
macro ackiors, sp ecifically, the option model develgped by Sutton, Precup, and
Singh [9]. Macro actiors general e actiors 1nto coupes of action. Corsider, for
examp le, a navigation p roblem wheye a robot has p pmitive actiors allowing 1%
tomove 1n each of the caydinal dijectiors. Macyo actiors are defined as p olicies
using the p gmisive actiors that descabe higherlevel objectives such as m oving
fron rodn to roon. Figue 2 shows the diffejence between gtiors and actiors.
The sohd arrow rep resents the effects of executing a p pmitive action (north,
south, east, west), while the dashed arrow 1ep resents the effects of executing a
macro action (leave-the-room).

A
B>
‘\
v Steap

Fig. 2. Navigation task illustrating the difference between primitive actions and macro
actions

According $o Sutton, Precup, and Singh [9], options comsist of thiee comp o
nents: apolicy m: S x A [0,1], a tegmination condition 8 : S +— [0,1], and a
set of it1ation states I C S. A macyo action can only be 1nvoked from a state
within the 1mtiation states I. Although fopnulated shghily diffeently, p olicies
as defined heje satisfy the same je®uiements as those p yesented above, namely
p rescbing which actiors to execute 1n each state. Re®uipng ZaieA m(s,a;) =1,
p olicies descybe p robabilistic selection of actiors for each state. While execut-
1ng, the agent will pefoin actiors according to the p olicy 7 until te mmination
according to the teqmination condition (.

It 15 obvious that if the agent were planning wSing macro actiors, the agent
can move fapgher for each decision 1t makes as compared to planning using
only p pmit1ve actiors. Macro actions corstructed to group actiors ielated to

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 253

achieving goals orsubgoals can be used to mp rove comp usational efficiency for
decision-making.

2.2 Macros and Goals

The wuse of the basic yewaid stucture for MDP models 13 limiting 1n that if the
agent has muliiple goals to achieve, those goals must be 1ep resented as part of
the state defimtion. For example, comsider if the dgnain states aje defined as
a p roduct of state vapables, Sgomain = V1 X Vo X ... x V. If an agent desies
10 se®uentially visit multple states 1n the domain, the actiors that the agent
selects will be diffejent depending on which of the goal states the agent has
alieady visited. Desiye states of the agent can be defined as a p roduct of the
goal vapables (boolean values 1ndicasing whether each goal has been achieved),
Sdesire = G1 X G X ... X Gk . The states 1ep yesented in MDP M must be able to
diffe ;ent1ate between the same domain states when the agent has diffejent desie
states, hence S = V] x Vo x ... x VL, x G1 x G X ... x G.

Macro actiors can be used to factor the desies of the agent from the state
descyption. This yields the benefit of sepajating analysis of the domain chayac-
tepstics from analysis of the desiyes. This allows reuse of the domain analysis
when desires change. If a navigation p roblem 15 on a 10x10 s®uare gnd, the
general solution for reaching any single location 15 a set of 100 p olicies, each of
s1 e 100, one for each p sssible goal location. If the agent has a goal to Visit two
locatiors, there are 10,000 p olicies, one p olicy corresp onding to each set of two
locatiors. Additionally, the s1 e of each p olicy 15 300, since for each location, the
agents may still desiye to Visit ersher goal location or both (assuming tegminasion
after visiting both locatiors). Inspite of this exp onential increase 1n comp lexuty,
the basic p roblem domain remairs navigation.

Recent work by Lane and Kaelbling has add jessed comp lexity due tomuliple
goals 1n the domain of robot package deliveyy [10]. In their work, the agent 1
tasked with the goal of navigating to a number of locations. Each location 18
treated as a subgoal, but no rewaid 15 given until the agent has successfully
visibed all locasiors. Each subgoal (1.e. moving to a g1ven location) 15 1ep esented
by a boolean goal vapable, denoting an undelivejed package. Initially all goal
vapables are set 10 0. Up on reaching a subgoal location, the goal vapable 15
set to 1, and can never be set to 0 again signifying that packages cannot be
undehvered. Goal vapables 1n this domain aye independent of each other, g1ven
the location of the agent.

Using the concept of gptioms p esented above, Lane and Kaelbling create a
macro action for each subgoal. An app roximase p olicy 18 then generated for the
overall goal of visiting all locatiors through application of a tyavelling salesman
algopthm to detemine the order 1n which the subgoals aje visited.

For example, take the domain 1llustyated 1in Figure 3. Locations labelled 1
through 3 rep resent the subgoals the robot desiyes to Visit. Unlike p pmitive
actiors, execution of a macro action will have vapable c®t depending on the
distance from the state in which the macro action was 1mtiated to the goal
location. Assuming umfopn ¢t permove, the cot for execution of a macyo 18

254 D.C. Han and K.S. Barber

@ @

Fig. 3. Multiple goals in a navigation task

e¥ual 1o the cost permove t1mes the exp ected number of moves from the curent
state 1o the teqmination state (E®uation 1).

C(macroy, s) = cE(# of moves from s to the tegnination state) (1)

The cots of macro actiors aye used to fopn a weighted graph among all the
subgoals as shown 1n Figue 4. Many algopthms exist for finding the shoptest
path visiting all nodes 1n a gyaph [11]. The application of t1avelling salesman
algopthms detemines the orderfora comp ound macro action which descyibes a
sefquential ordepng of macro actiors. While this 15 useful for goals that exist in
an ’AND’ (1.e., reward 15 not given unless all subgoals have been achieved) rela-
t1omship, goals can be jelated 1n other ways yielding m ore comp hicated behavior
by the agent. Of pagicular interest to this yeseaych 15 the abihity of agents to
chowe whether or not 1o addess a goal they have been tasked with.

C(macro ,,g,)

C(macro ,,s)

C(macro ,,s;
Initial (2

State

C(macro ,,8

C(macro ,,g,)

Fig. 4. Weighted graph relating costs to travel among the goal locations

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 255

2.3 Desire States and Goal Analysis

As a depagtuse from the robot dehvery domain used by Lane and Kaelbling [10],
this work addesses cases whee reward values aje set for each goal, rather than
for the completion of all goals. An mp orfant chamactepstic of an autonom ous
agent 18 the ability 1o decide which goals topusue. Towards this end, the agent’s
desiyes may be combined 1n an ‘OR’ fashion, whe e the agent may rece1ve yewads
for goals independent of other goals . In this case, the agent must corsider not
only the oyder 1n which to achieve goals, but whether to t17 to achieve each
paricular goal at all - the cost to achieve a goal may outweigh the reward.
Additionally, since execution of actiors will change the agent’s distance to the
1eSp eciive goals, pupuing one goal may make 1t more or less p rofitable (even
urp rofitable) topusue other goals.

As a conciete example of a dogmainp roblem matching this descyiption, imag-
1ne a toupst visiting a new city. The toupst has a limited amount of money
forsighiseeing, and must select from a set of econmended sights to visit. The
sights are rated by the toupst based on 1nteress, assigning a rewad value to each.
Additionally, $ramsp otation costs for $1avel 1n the city are based on distance,
making 1t a ct-tomove framework 1n a navigation domain.

By cieating macro actiors to achieve each individual goal, the entie set of
state vapables can be abstracted away. Irstead, reasonming can be pefommed
purely 1n tegns of desire states, referred to 1n this paper as the desire space.
Figure 5 shows the desiye space for the example robot navigation domainshown
1n Figuye 3. Each state 15 labelled with the set of goal vapables denoting which
goals have been achieved 1n that state. Initially, the agent 15 1n the state marked
by the empty set and the current location. Application of each macro leads
the agent to the desije state where the app rgp pate goal 18 majked as achieved,
leading up to the state with all goals being achieved. Unforunately, the complete
domain space cannot be factored out because the cost function for the macro
actiors 18 dependent up on domain state. Luckily, if an agent executes actiors
according to this decision-making mechamsm, the only relevant states aje the
curent state and the tepnination states of the macro actiors.

The m ot1vatiors for 1eas omng 1n the desire space include: (1) the desiie space
18 smaller than the complete state space, and (2) the styuctue of the desie
space can be explated algopthmically for efficient comp usation. The model for
reasomng about the desiye space 15 defined as follows. Given the state space of
the p roblem Syomain, Sone subset of these states ae marked as goals, Goals C
Sdomain = 191,92, ---gk }- The states of the desiie space are builé fron the goal
vapables and the agent’s location 1n the domain space. Each macro action 18
corstructed to move the agent to a given goal state. The temminal states are
€p resented as a p robability distpibution over the domain states. However, due
to0 the natue of macro actiors, the p robability 15 concent rated on the goal state.
It 18 p ssible for a macyo to have tepnination states that rep jesent fallure of
that macro to achieve 1ts goal bus, for stmphicity of explanation, this paper
expects the macro actiors to always temminate 1n 18s goal state without fail.
The desie states are denoted by a tuple (Guen,s). The fist element of the

256 D.C. Han and K.S. Barber

Mac

Fig. 5. Desire space for the three goal navigation domain

tuple,G,op 18 the set of goals that have been achieved. This element could also
be 1ep iesented by the complement of the set of achieved goals (1.e., the set of
unachieved goals), but will be labelled as the achieved goals for this discussion.
The second element of the tuple 15 the location of the agent 1n the domain
states, Sgomain- The agent can only be located at the imitial state s;n4tiq1, o1 88
a esult of execusing a macro action, 1n an accomplished goal state g;, hence,
Sdesire = {<{}7 sinitial>7 <Gach;gi> s4. Gyen € Goals and gi € Gach}' The action
set Agesire = {macroy, macros, ..., macrog } 15 the set of macro actio1s, one for
achieving each goal the agent hold. Finally, the rewayd function, R : Goals — R,
assigrs a separate reward value to each goal.

Since the rewaid function 1 assigned shghtly diffejently fron that used 1n a
MDP, the valuation of states and actiors 15 changed somatch. Global te mmination
states are those states 1n which there are nop rofitable macyo actiors. States 1n
which all goals have been achieved are global te gninationstates since all rewads
have already been collected. The global tegminationstates (where all goals have
been achieved) ae assigned a Value of 0, indicasing that no fursher action will
yield any rewaid. The expected value of desie states 13 defined as follows:

V((Goals,s)) =0 (2)

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 257

C(macro;, s)
V((Gachn, s)) =max | 0, max +R(gi) (3)
moer o €8st \ LV (Goen U L0},)

The value of a state 13 simply the sum of the cost of executing the macro
from that state (a negative numbey), the yeward for achieving the mmediate
goal through macro execution, and any expected value for being 1n the resulting
state, due toexp ected futue goal achievement. Note that 1f no action s p rofitable
(1.e., the cost of each action outweighs or e®uals 15 benefits), then the state 15
also a global tegnination state and 15 g1ven a Vvalue of 0.

The specific stpucture of the graph dfes many explotable chajactepnstics.
Since the domain does not allow goals to become unachieved, logps cannot exist
1n the graph, fopming a tree stucture. This enables calculation of the expected
values top roceed through simple accumulation of the values from asingle graph
travesal.

3 Model Modification for Dynamic Goals

Multi-agent systems perate 1n dynamic enViroriments. Dynamism may come
from many sources. The p popties of the agent designer may change, causing
changes 1n the agent’s jeward structues. Addisionally, agents ae affected by
the behavior of otheragents 1n the system, eithe r imp heitly th rough comp etition
for domain jesouices, or exp licitly through aygumentation or negotiation. Even
the agent’s own actiors may change the decision model 1t follows 1if theye 15
uncegainty 1n the environment. Regadless the cause, the agent’s p ponty 18 to
maintain pational action 1n the face of these changes. To the system designer,
1n addition to rationality, computational efficiency 18 also an 1ssue. This can be
addyessed through the jeuse of p1eVious computatiors 1n the planmng p rocess.
Satoh also attempts to reuse comp ukasion 1n his abductive planmng system [12].

3.1 Maintaining Rationality

Although goals may change over time, the overall style of g eration of the agent
may remain corstans (1.e., the agent will always 1y to maxmi e 1ts ewayds).
Hauskecht et. al. [13] builé on the work of Sutton, Precup, and Singh tosolve
hieyachical MDPs using macro actiors. In their work, they add ress local changes
in rewad stpucture or system dynamics by comstructing a hybpad MDP using
both macyo actiors and p gmitive actiors. The area of the MDP m st affected
by goal changes 15 jecalculated using the p pmitive actions. Their work assumes
that the reward function and system dynamics yemairs the same 1n all but a
few regioms of the state space. In thoe reglors where the state space 13 not
changing, Hauskecht advocates jeuse of the macyro actiors. When dealing with
muliple goals, the addition or removal of goals may cause layge changes 1n the
overall state space for an agent. However, due to the stucture of the desije

258 D.C. Han and K.S. Barber

space, much of the p jevious comp usation canstill be jeused. It 1s from this euse
that computational efficiency 15 gained.

As a smple elabomation 1n the robot package dehveyy domain, supp ose the
robot can accept packages for dehveyy as well. Each package 15 1ep resented as a
goal, so accepiing a package efuates to goal addision. Also, up on dehvery, the
package 15 nolonger the resp orsibility of the agent. This coresp onds o asmple
examp le of goal yem oval. For Vapous jeas ors, packages may become moje or less
ugent, corresp onding $o changing reward values for the goals.

In a dynamic setting (1.e., one 1n which events exogenous to the agent may
modify the wodd) achieving ¢ptmahty 15 mp ssible except through happen-
stance. Optmality je®uiyes that the agent have a pejfect p yedictor for future
system behavior. Rationality je®uies only that the agent act in 188 beheved
best interests. In a domain with complete knowledge (past, p resens, and fususe),
as1onality would e®uate to the gtmal solution though still comp utationally
expersive. With incomplete knowledge, the agent should 17 topefomm as well
as 1t can, given 1ts lmited knowledge and resources. Lacking any infopmation
about the future, an agent can be corsidered ational if 18 executes actiors which
are corsidered ¢ptmal 1n the model the agent holds at the time 1t executes the
actiors. When faced with new infopmnation, the agent maintairs rationahty by
evising 188 model and confinuing execusion with whatever action 13 then be-
heved to be gptmal. The following sectiors descpbe algopthms formaintaining
@t1onahity by m odifying the decisionm odel 1n 1esp orse to changes 1n the desiyes
of the agent.

3.2 Goal Removal

Goal yemoval allows the agent to reduce the s1 e of the desije space that 1t
models. Thee ae two cases for goal removal: (1) the goal has aleady been
achieved and (2) the goal has not alyeady been achieved. Both cases aje suple
due to the stucture of the desie space.

The fist case 15 tpvial due to the stpuctue of the desie space. The agens
needs only teat the curent state as the new root of the model with no recalcu-
lation necessayy. All desiie states that aye not eachable fron the curent desie
state can be p funed from the model (e.g., thoese desire states 1n which the goal
being removed has not been achieved). In fact, the goal vapable 1self can be
remoVed from the 1ep resentation wsed by all emaimng desie states. Since the
value assigned to that goal vapable will be e®uivalent for all ;emaimng states,
1t can be safely factored out of the desiie state 1ep resentation without affecting
any of the jemainming desiye state Values.

Algorithm 1. REMOVEGOAL(d,g)
location = d.location
d =CHILD(d, g)
d.location = location
UPDATE(V (d))

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 259

When the goal being removed has not alyeady been achieved, jecalculation
13 necessary to rem ove the value of the goal from the action-selection reasoning.
Due to the styucture of the desiye space (Figure 5) , the value of any given node
15 dependent only on the unachieved goals and state of the agent at that node.
Comp utation 18 saved by caching the values of each node. Algopthm 1 descbes
the yremoval of goal g. The function CHILD(d, g) returms the desiye state that
esults from execusing the macro to achieve g 1n the desie state d. The agent
tmamsitiors 1n the desie space as 1if 18 had achieved goal g. The yesulting state in
the desiie space 18 then updated with the agent’s curent location 1n the state
space. Finally, the value of the current new state 15 jecalculated based on the
new location. The values of the childien states had p reviously been calculated,
but due to the new location, the cssts to reach the childien have changed. This
may cause a new macro o be selected as the m @t p rofitable when calculating
the new V(d).

Macro 1

% '°2

=
m
&
S
w

Fig. 6. Modification of desire space for goal removal

Figue 6 1llustyates the effect of p fuming goal g1 from the desie space. Note
that the des1estates highhighted 1n gray show the jeused state values afterthe e-
m oval of g1. Tohighhght this reuse, note that by Equation 3, V({({G1, G2}, g2)) =
C(macrogs, s) + R(G3) + V({({G1, G2,G3}, ¢3)). Since achievement of all goals,
with Goals = {G1,G2,G3}, resulis 1n a tegninal state, V(({G1, G2, G3},¢3)) =
0. After temoval of G1, Goals = {G2,G3}, making ({G2,G3},93) a temmi-
nal state. The value of being 1n state ({G2},¢2) 8 C(macrogs,s) + R(G3) +
V({({G2,G3}, g3)), efwmivalent to thep re-em oval value of state V (({G1, G2}, g2)).

260 D.C. Han and K.S. Barber

3.3 Goal Addition

Goal addition can be handled 1n a single tavesal of the graph. Algopthm 2
descpbes thep rocess foradding goal g $0 desiiestate d. This algopthm descpbes
the desiie state 1n temms of the unachieved goals, G4cp, @therthan G, because
up on addition of a goal, the euse of desiyestate values 15 hinked to the unachieved
goals 1n that state. For desiie state d, a new macro action 1 added for achieving
goal g and the yesulting desire state d’ 15 created. The childen of d ae added %o
d'. Afser the addision of the child yen, the value of d’ can be calculated, selecting
the best macro to execute 1n that desije state. The new goal g 1s then added to
each of the childyen of d, corstpucting a depth fist $avesal of the tiee. Finally,
the value of s 15 wp dated, p ®sibly changing the best macro to execuse.

Algorithm 2.AddGeal(d,g)

d = new STATE({d.Gacn, g))

d~Gach = d~Gach +g

for all i € d.children do
ADDCHILD(d', 7)

end for

UPDATE(V(d'))

for all i € d.children do
ADDGOAL(z,9)

end for

d.children = d.children + d’

UPDATE(V (d))

Replicationsaves the computational cast of recalculating the values forstates
which will have e®uivalent values top reexisting states. Figure 7shows the result
of adding ¢1 to0 a model that already 1ncludes g2 and gs. Desiye states maked
1 gray are replicated from the opginal model into the resulting model through
ADDCHILD 1n the algopthm descubed above. In the diagyam, the e are muliple
paths to reachsome of the laterstates in the m odel. Caching of desie state values
futher yeduces computation as a node only needs to be computed once and can
be reused for each other1ncoming edge.

3.4 Goal Modification

The rewards associated with goals may change. This may be due to the passage
of time or ac®uwsition of new 1nfopmation. States 1n which the goal has been
achieved aje not affected by any change 1n the value of that goal. Only thse
states leading up toachievement of that goal aie affected. Similarto the addition
of goals, des1e state values can be updated by a single tavesal of the graph.
By 1ntelhigently caching the value calculation results lage sectiors of the desiye
space are not touched.

The ove rall objective when handling dynamic goals 1s 1o reuse the calculations
that stay static acress changes. In each of the jem oval, addition, orm odificasion

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 261

Macr

Macro 3

Fig. 7. Modification of desire space for addition of a goal

cases, the desire space 18 divided 1nfo Sectiors by the app r fate macro action.
On the opiginating side of the macroaction, desiestates je¥uie recalculation. On
the yesulting side of the mac ro action, p reViously calculated values can be reused.

4 Application to UAV Domain

Applying this esearch to build an gerating system jases other inteesiing
p ortunities for app roxmmation and estmmastion. The work p reSented 1n the p re-
Vipus sectiors has been mplemented for expepmentation and dem orstation
1n the domain of unmanned aepal vehicle (UAV) control. Figue 8 shows the
grap hical user interface for the simulation. In the simulation, the environment
has been abstracted into a Cagesianplane. Tagets aje placed at vapous p oints
1n this plane and the agents, cons rolling the UAVs, ae tasked with visiting the
vapous taygets. Uncepainty 15 1né roduced into the donain by the movement of
the tagets, forcing the UAVs to gpemate with p essibly stale infopnation regad-
1ng the location of the taygets. Thiee UAVSs aje shown by the dagk ciycles. Lines
extending out of the UAVs show the past and futuse planned m ovement.

At the m &% basic level, an agent has control over the heading and speed of
a single UAV. A state 1n the state space 18 defined by the location, heading,
and speed of the UAV 1n conjunction with the locatiors of the taygets. Even
1n this smple domain, analysis of the state space directly 15 computationally
s yactable. App roximation and estimation methods are used to fugher reduce
comp utation re®uired for decision-making.

262 D.C. Han and K.S. Barber

£ UAV Action Selection Demonstration -|o| x|
EvELIP
Config Parms:
Uav Count 3 o
Target Count o
Trail Size 10 73
Sim Delay 25 = ‘
Distance Weight 72
s 2 78
0 25 50 75 100 , Xi
Age Weight i
()
0 25 50 75 100 g
Preference Weight % !
74 81
0 25 50 75 100 ?il @ j.
Hit Rate: 1.0
Avy Time: 22
I
»
80
Seed: 3 o)
Board: 550 x 550 ~x
Time Period: 1660
[resce [viay 1+ |

Fig. 8. UAV demonstration of decision-theoretic action selection

Macro actiors are corstricted somove to each taget location, enabling rea-
soning 1n the desie space. Through domain analysis, macro actions can be cre-
ated manually to control the gperation of the UAVs. The macyes corsists of the
actiors refuired to tun the UAV towaids the sp ecified taget and m ove uniil the
destination 13 reached. If the tayget 15 not found, then a simple seach pattern
15 executed. Though not necessaply gimal, good domain analysis may yield
macra that reasonably app roximate the gtmal behavior for each goal.

Each tajget has an associated reward value, illustiated by the cicles sup-
rounding the tajgets. Calculating the exact expected cot 15 rather complex due
to the movement of the taygets. P robabilistic encounter models could be used.
E.g., coat of each macro usage can be cheaply estimated as a function of the
distance between the UAV and the tages.

Tajgets are added to the system jegulajly. Additionally, with moe than one
UAV @erating 1n the system, tagets may be removed through the action of the
other agents. These additional estimation methods, the manually corstracted
macro actiors and cot estimation functiors, aid 1n p roducing the ®uick deci-
siors that aje necessayy for gpermting 1n highly dynamic domairs that demand
comp utasional efficiency.

5 Conclusion

Autonomous agents are p rovided with 1ndependence 1n the selection of which
actiors they should perfommn. Although they aje provided this 1ndependence,

Desire-Space Analysis and Action Selection for Multiple Dynamic Goals 263

the agent’s actiors must also Ieﬂect 155 desiyes. OVver tmme, desiyes may change.
This reseach extends p reviouws work on wSing MDPs 10 p rovide rational action
selection 1n the face of changing desiyes.

MDPs p rovide the mears for decision-theoretic reasoning but are afflicted by
the “cupe of dmersionahity . Macro actions enable yeas oning on am ore abstact
level than the p pmitive actiors 1n the domain at the cast of p sssible subgp tmal-
1%y 1n the actiors of the agents. For a restncted class of domain p roblems, such
as the “cot-tomove framework, styuctue 1n the desiye space can be exploited
10 reduce computation needed to make app roxunately ¢imal moves. Macro
actiors encapsulate the domain chajactepstics, enabling the decision p roblem
p wed to the agent to be tramsfommed 1nto the desie space. Reasoning 1n the
desire space of the agent allows the agent to app roximately weigh the costs and
benefits of each of 188 goals at an abstiact level. In the desiie space, the agent
can smply add, remove, and modify goals. The dawback of this app roach 1s
that 18 1gnoses p ossible action orsubgoal inteyactiors among the goals.

Analysis p resented 1n this paper addessed goals comp sed 1n an indepen-
dent manner, as compared $o the work of Lane and Kaelbling which addessed
sets of goals where a single reward was given for completion of the whole set.
Fupher analysis of the dependencies among goals will enable efficient eas oning
over goals that aye comp sed wsing other petos (1.e., ‘NOT’ or ‘XOR’) or
comp osed hieachically. Quantitative analysis of the exact comp utasional sav-
1ngs 18 currently being pusued. Addisionally, methods for integrating the goal
valuatiors with negotiation and agumentation mechamsms aye being pupued.

Acknowledgements

This research was funded 1n pap by the Deferse Advanced Research P rojects
Agency and A1y Foce Research Laboratory, AirFoice Mate pel Conmand, USAF,
under agreement namber F30602-00-2-0588. The U.S. Government 15 authopn ed
to 1ep roduce and dist pbute rep anis for Govermmental pup ses notwithstanding
any cqy ght annotation theeon. The views and conclusiorns herein aje thase of
the authos and should not be 1nte jp reted as necessanly 1ep resenting the official
p olicies or endosements, erther exp ressed on mp hied, of the Deferse Advanced
Reseach Projects Agency (DARPA), the A1y Force Reseach Laboratory, or the
U.S. Government.

The research rep orded 1n this document was pefoined 1n connection with
Cont ract nimbeyr DAAD13-02-C-0079 with the U.S. Edgewood Biological Chem-
1cal Command.

References

1. Wooldridge, M.: Reasoning about Rational Agents. The MIT Press, Cambridge,
Massachusetts (2000)

2. Bentahar, J., Moulin, B., Meyer, J.J.C., Chaib-Draa, B.: A computational model
for conversation policies for agent communication. In this volume.

264

10.

11.

12.

13.

D.C. Han and K.S. Barber

Mancarella, P., Sadri, F., Terreni, G., Toni, F.: Planning partially for situated
agents. In this volume.

Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action descrip-
tion updates. In this volume.

Georgeff, M.P.: Planning. In Allen, J., Hendler, J., Tate, A., eds.: Readings in
Planning. Morgan Kaufmann Publishers, San Mateo, California (1990) 5-25
desJardines, M.E., Durfee, E.H., Ortiz Jr., C.L., Wolverton, M.J.: A survey of
research in distributed, continual planning. AT Magazine 20 (1999) 1322
Boutilier, C.: Planning, learning and coordination in multiagent decision processes.
In: Theoretical Aspects of Rationality and Knowledge, Amsterdam, Netherlands
(1996) 195201

Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assump-
tions and computational leverage. Journal of Artificial Intelligence Research 11
(1999) 1-94

Sutton, R.S., Precup, D., Singh, S.P.: Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence 112
(1999) 181211

Lane, T., Kaelbling, L.P.: Nearly deterministic abstractions of markov decision pro-
cesses. In: Eighteenth National Conference on Artificial Intelligence (AAAI2002),
Edmonton, Alberta, Canada (2002) 260-266

Gutin, G., Punnen, A.P., eds.: The Traveling Salesman Problem and Its variations.
Kluwer, Dordrecht, The Netherlands (2002)

Satoh, K.: An application of global abduction to an information agent which
modifies a plan upon failure- preliminary report. In this volume.

Hauskrecht, M., Meuleau, N., Kaelbling, L.P., Dean, T., Boutilier, C.: Hierarchical
solution of Markov decision processes using macro-actions. In: Uncertainty in
Artificial Intelligence (UAI98). (1998) 220-229

Organising Software in Active Environments

Benjamin Hisch!, Michael Fishey!, Chiaja Ghidim?*,
and Paolo Busetta?

! Department of Computer Science,
University of Liverpool, United Kingdom
{M.Fisher, B.Hirsch}@csc.liv.ac.uk
2 Automated Reasoning Systems Division,
ITC-IRST, Trento, Italy
{ghidini, busetta}@itc.it

Abstract. Inthis paper, we investigate the use of logic-based multi-agent
systems for modelling active environments. Our case study is an intelli-
gent support system for a so-called “active museum”. We show the ap-
proach of structuring the “agent space”, i.e., the social organisations act-
ing within the environment, is well fitted to naturally represent not only
the physical structure of the application, but also the virtual structure
in which it operates. The adoption of a logic-based modelling system pro-
vides high-level programming concepts, and allows the designer to rapidly
design and develop flexible software to be used in active environments.

1 Introduction

In recent yeas, computing devices have become extiemely p oweful while, at
the same tme, being small enough to 1ntegrate within p otable devices. To-
gether with the advent of wijeless commumcation methods, the technological
p 1e-refuwsites for ubi®uitous computing aze beginmng $o be 1in place. However,
1% 13 much less obvipus how to actually make use of these devices 1n order to
create an enViroment where the complexity of the surrounding comp uting en-
Vironment 13 hidden from use;s, while still being available and able to adapt to
m ovements /p references of the usess.

Within the agent reseaych commumty, many paths to tackling the comp lexity
of interactions, communication, co-ordination and organisation have been pur
sued [16]. Some of the theoges develgped have been ®uite deep, yet few have
found their way 1nto Viable p rogramming app roaches for mulii-agent systems.
An exception s oureagier work [12,15], which 15 based on a strong fogmal the-
ory of agency combining modal, temp oral and mulii-context logics. By directly
executing sp ecificatiors p rovided 1nsuch a theoyy [9], she behaviour of individual
agents can be mplemented [11]. Ovedayed ont of this 18 a mulii-agent organ-
sational model comp psing the notion of agent groups, p roviding the ﬂex1b1]1ty
and adap tability $0p rogram more complex mulfi-agent comp utatiors.

* Work supported by MIUR under FIRB-RBNE0195K5 contract.

J. Leite and P. Torroni (Eds.): CLIMA V, LNAI 3487, pp. 265-280, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

266 B. Hirsch et al.

The fign foundation 1n fogmal logic alsop rovides the p ssibibity of carging
out verification of computation under Vayying envirormental conditiors [2].

Our am 1n this paper s to utilise the app roach above [12,15], which 15 es-
sentially based on the METATEM executable temp oral logic [1], 1n ordertoshow
how computational logic 1n general, and temp oral logic 1n padicular, together
with a stpactued agent space, allows us o €uickly and naturally model complex
real wordd comp uting environmenss.

To reinforce this claim, we will apply the above app roach to a specific ac-
#1Ve enVironmens, namely the so-called “active musewni [19]. We will show how
such a logic-based multi-agent system, while being relatively st pughtforward to
build, can be an effective and high-level $o0l for m odelling conp uting environ-
ments that aye 1nheently ﬂex1ble, adapt to changes within their environment
(and therefore to the usess), and extersible. We will show how the app roach of
structupng the “agent spacé | 1.e., the social ogamsatiors acting within the en-
Vironment, 15 well fitted $o natuyally 1ep yesenting not only the physical st pucture
of the application, but also the vigual enVironment within which the softwaye
apefacts eside.

The styactue of this paper s as follows. To begin with, the concept of the
active museum 15 explained 1n Section 2. Then, 1n Section 3, we 11t roduce the key
concepts of the pagicular logic-based p rogramming language we am to utilise.
The resulting multi-agent system 15 explained 1n Section 4 and 1ts mplemen-
tation 18 descpbed 1n Section 5. The apphication of this app roach to the active
museum Scenapfo S p esented 1n Section 6, and the advantages of this app roach,
pariculady as mobile agents move through the ogamsational layess, are dis-
cussed 1n Section 7. Finally, 1n Section 8, we p rovide concluding yemarks.

2 The Active Museum

In work on the PEACH p roject! [19] the concept of “active musewni 1s being
investigated. This s a foqm of active environment [18], and can be seen as a
lajge scale mulii-usey, multi-media, multi-m odal system. In the case of PEACH,
museum Visibos are p rovided (erther on demand orp ro-actively, depending on
the context) with infognation about exhibits they may see within the museum.
This infogmation may be dyawn from a Vagety of infopnationsources and media
types (museum seyVer, online yem ote serVess, etc.), and p resented 1o the Visitos
by a vapety of chents (for example, hand-held devices such PDAs, kigsks, wall
scieers, and So on).

Geneqally sp eaking, active environments have some charactepstics that make
them substantially diffejent fron $aditional comp uting and HCIs. For1istance,
multiple uses may be 1n a single place, 1nteracting with different applicatiors
smultaneously. The set of uses changes dynamically over time. Uses are un-
aware (and umnterested) that the environment 15 foimed of many distabuted
comp onents. Therefore, they 1nteract with the environment as 1if 1t were a single,

! http://peach.itc.it

Organising Software in Active Environments 267

m onolithic system. However, services aje p rovided by a vapable set of comp o-
nems that join and leave the environment on mobile devices or that may be
inning anywhere ele. Seyvices p rovided by these comp onents can (partially)
oVerap; theefore, they need to coordinate 1n order to decide, for 1ms¥ance, who
p rovides a sp ecific service, and how 18 15 p rovided, 1n a sp ecific context.

In our reference scenajio, the active museum, use’ p csikiors and resouce
availlability may imp e corstraints on the geneation and display of information;
esouces may apidly change over time, while uses move around. In the back-
ground, uwser modelling agents silently record histopes of user interactiors and
buld p rofiles by obseyving their behaviouy; theiy goal 18 to customnise p resenta-
t1015, avoiding rep etisiors or 1napp rap pate content. Fuyghem ore, one long-tem
object1ve of the PEACH p roject 15 supp orting groups of Visitoss, such as famihes
orclasses of child en, by p roviding tools that allow the shanng of exp epience and
mp rove learming. All these e®usites mply 1nfersive conmunication am ong the
software collaborating $o p rovide serVices well beyond current communication
architectures and seyVice comp osit1on techm®ues. The objective here 15 to create
a highly dist pbuted and dy namic environment, whe e the number of comp onents
capable of p roviding services continuously Vajpes.

The mp lementation of an act1ve museum that has beenp rovided in PEACH
ehies onthe abihity of sending messages to roles, ratherthan to1ndividual comp o-
nents, and overhearing conve satiors happ ening am ong any set of conp onents of
the system. This enables the aggiegation of servicep roviding agents 1nto teams
that have been called implicit organisations [5,6]. In $urn, this enables context-
sers1t1vVe behaviourto be built 1nto objects embedded 1n the enviyonment, fieeing
high-level app licatiors (concerned, fori1mstance, with supp ording knowledge shar-
1ng within a group) from 1ssues concerning serVice conp sision and dehiveyy 1n
a specific environmens. The mplementation of this 1dea 15 based on a fogn of
grovp communication called channelled multicast [4], which 15 supp orded by an
exp epmental conmumnication 1nfrastpucture, called LoudVoice. LoudVoice sup-
p orts the creation of channels on-the-!'y; messages sent on a channel are received
by all agents tuned 1nto 1t.

3 MetateM

Over the last few yeas many different sheopes and sp ecificasion languages, to-
gether with mplementatiors of individual agents [17] and orgamsasional asp ects,
such as teamwork [20], have been develgped. HoweVer, these ajeas of yesearchsel-
don overdap. Many sp ecification languages aje oo canplex to dijectly tarmslate
1mmto a (execusable) p rogram, and often 1gnore 1ssues that apse with interac-
t1on and collaboration between agents. On the other hand, mplementatiors of
multi-agent systems often have only a ﬂeetmg connection with agent theopes or
theopes about teamwork.

Many sp ecification languages are based on logic, which allows for (p otential)
Venfication of the sp ecification, and the ability to use high level concepts, while
als o often yesulting 1n a concise rep yesentation. Agent theoyes are typically based

268 B. Hirsch et al.

on the s o-called BDI logic [3], combimng styands for belief, desire, and intention.
By using those mentalistic notions, the agents’ reasoning about their environ-
ment, their choice or creation of plams, as well as the puswt of goals can easily
be exp ressed 1n logical tegns. HowevVer, this exp ress1ve p ower leads 1o a Very
high complexity 1nvolved 1n handling the jesulting sp ecificatiors.

The sp ecification language we use hee, based on METATEM [1], 15 an exe-
cutable logic. That 18 tosay, we can directly execute the logical sp ecificatiors,
theeby pagially budging the gap between theory and p ractice. The multi-agent
enVironment natively supp orts the dynamic stpuctunng of the agent space into
groups (and teams). METATEM 18 based onp r@ cs110nal hineartemp oral logic [14],
extended with m odalities for (bounded) belef, confidence and abilities [12]. The
resulting logic 1s still exp 1ess1ve, yet simple enough to be dijectly executed. Be-
lief 18 modelled using a m odal mulii-context logic that 15 roughly e®wmivalent to
the standad KD45 m odal logic, while confidence 15 modelled as “beheving thas
eventually something will happ en. Abilhity 15 Vey simple, being httlemore thana
m odality that can be used top refix fopnulae. While aybityayy temp oral fopnulae
can be wsed tospecify the agent behaviour, agents are, 1np ractice, p rog rammed
using a special nognal foyn called SNF, which 15 pagiculady amenable to exe-
cution and Vepfication [10]. As an example of asmple set of SNF? ‘yules’ which
might foqm pat of an agent descpption, corsider the following

start — in_office
(in_office A ~hungry) — Qin_office
(in_office N hungry N Apebuy_food) — Bpme O (min_office A buy_food)
(buy_food N Aeeat) — P—hungry

Here, ‘O’ mears “1n the next moment , while ‘<>’ mears “at some futue mo-
ment . Thus, the above desciibes ascenapo where I am 1n the office at the begin-
ning of execution, and will continue tostay 1n the office while I am not hungyy.
However, once I become hungyy and I am able to buy food (A, buy_food), then
I believe (B,), that 1n the next moment 1n time, I will leave the office and buy
food. Finally, 1f I buy food and am able to eat (A,,eat), then eventually I will
not be hungy.

The execution essentially foyward chairs through a set of such pules, gradu-
ally comstpucting a model for the specification. If a contadiction 13 geneated,
backtacking occus. Eventualities, such as ‘O-hungry’ are satisfied as soon as
p ossible; 1n the case of conﬂlctlng eventualities, the oldest outstanding ones are
attemptied fi;st. The choice mechamsm takes 1nto account a combination of the
outstanding eventualities, and the deliberation ordenng funciiors [11].

As mentioned above, behef 15 modelled using bounded multi-contexs logic.
Smply sp eaking, belief peratos are computed by creating new time hines and
checking them for comsistency. As each B; geratoris expanded, a record of the

2 For clarity the rules are presented in this way, even though they are not in ezactly the
SNF form.

Organising Software in Active Environments 269

depth of nesting of such peratos 1s keps. Once the current bound forexpanding
the belief contexts 15 reached, explomation of the curent behef context ceases.
Because abilities and behefs are not used 1n this paper, we jefer the inteyested
reader vo [12] for an 1n-depth discussion on bounded belef.

4 Structuring the Agent Space

While the above app roach 15 essentially concerned with single agents, the exten-
sion to Concurent METATEM [8] was concerned with modeling and p rogram-
ming general mulii-agent comp utation. This app roach has been develgped over
a number of yeas, with an mp ofant aspect being the notion of flexible agent
grouping [13]. Here, agents are ogamsed 1n groups, and groups themselves ap-
pear, tothe outside word, as agents. ConVve sely, agents can contain otheragents
(and theeby appearas groups for them), and groups can be contained 1n agents
(that 15, groups can contain other agent groups). Thus, agents can be membes
of several groups, and can contain many agents. It 15 vital $o0 undestand that
while we use the woids agent, group, and group agent at diffejent $1mes o refer
to aspects of agents, we are always talking about one and the same entity.

Dupng execusion, each agent, a, has twomainsets 1t uses for conmumcation,
188 Content and 1ts Context. The Context comtairs references to the groups
(agents) that a 18 member of, while the Content contairs references to agents
that aremembess of a. Figuie 1shows thiee diffeent ways of 1ep resenting nested
agents: as ovedapping sets; as a membeship tree; and as a membeghp table.
In the latter, CN denotes the agent’s Content, and CX 1ts Context.

Agent|CN |CX
A {B,G}|0

B [{D.CI[{A]
C [{B,G}
D {E,F}[{B}
E D}
F [D}
G {A} C,H}
H 0 G}

I 0 A}

Fig. 1. Different views of nested agents

The key reasors we wish to identify agents and groups aze:

— this 15 a natupal way to 1¢p reSent complex p roblems and s oftware;

— many types of meta-data can (concurently) be 1ep iesented (task styuctue,
abilities, physical location, owneship, s ocial relatiors, teams, eic) within the
agent space t ology; and

— groups can evVolve fran “dumb containes 1nto sma entities with jefined
p olicies, reactive/delibeate behaviour, etc.

270 B. Hirsch et al.

Effectively, groups and agents aye Viewed as one and the same entity, avoiding
the need to introduce sepaate mechamsms to deal with agent stuctupng and
organisation.

4.1 Dynamic Grouping

While a mulii-agent system geneally stas out with s gne p re-defined st pucture,
agents can dynamically adapt the structure to it their needs. In papiculay,
agents can add agents to, and remove agents from, theiy Content (yesp. Context);
1.e., they can move within and change the stypicture. In addition to being able
tomoVve through the hieachy, agents can cease and clone themselves, and can
create new agenss (and hence new groups).

By creating new agents, they can harness the p ower of the st ructure. Agents
can, for example, create group agents and 1mstract them to 1invite other agents
with a cegain ability ¢ tojoin. Now the creating agent has a group of agents able
to do ¢ at 16s disp wal. Because groups aje 1n fact agents, their behaviour can
range from pure “containe of other agents, through to complex behavious
such as only allowing agents to join that agree to0 a ceppainses of pules [15]. For
example, 1f all agents 1n a group were to have the rule

receive(M) = (Qdo(M)

meaning “whenever you receive a message, make 1t tyae 1n the next moment 1n
tmeé , as pap of their behaviour, then the group agent would be able to utilise
the abihities of all these agents simply by asking them to dosomething.
Thestuctuse of the agent space can be used toencode many diffejent types of
infopmation, avoding the need for individual agents to keep an extersive knowl-
edge base and to keep that knowledge corsistent with the (dynamic) environ-
ment. The types of infopmation range from task and ability styuctures, o 1ep 1e-
sentatiors of somephysicalspace tometa infopnationsuch as ownerinfognation,
t1ust relatiors, and so on. For example, if an agent 15 0 accomplish some task,
but does not have the coresp onding abilities, 1t can create a group agent that
comtaurs agents that can accomplish (sub-) tasks, which in turn again can in-
vite other agents to their yespective content. Eventually, the stpuctue becomes
an accupate rep resensation of the diffejent sub-tasks 1nvolved 1n executing the
main task. Sumilady, by re-creating the p hysical st pacture within the agent sp ace,
agents can be modelled as being part of both physical and vijgual st puctuges.

4.2 Communication

In order to make effective use of diffejent stuctues within the agent space, a
fexible message passing System has been devised. Whilst the genejal 1dea 15 to
broadcast messages to either Content or Context, agents are als o allowed tosend

1. messages tospecific subsets of agents (e.g., send(SE,Message)),
2. nested messages (e.g., send(SE1, send(SE2,Message))), and
3. recus1ve messages (e.g., sendA11(SE,Message))

Organising Software in Active Environments 271

In case (1), the agent can eitherspecify aset of one ormore agents by name, or
1% canspecify a set expression. The sent message can in turn be a send message
(case (2)), shus p roviding a foim of forwarding. Finally, the sendAll diective
st acts the jeceiving agent to re-send the message 1o the same set (adapted to
155 own local Content/Context).

A set exp ession (SE) may be a single agens, a set of agents, the vapables
Content or Context, or any of the gperatiors SEI U SE2 (umon), SEI N SE2
(1méeection), or SEI \ SE2 (subtaciion) applied toset exp ressioms. Note that
the special vapables Content and Contexrt are always intep reted locally.

Using this language, we can easily exp jess the sendAll dijective using the
following e®uivalence:

sendAll(Set, Message) = send(Set, Message) A
send(Set, send(Set \ Self, Message))

The special vapable Self jefes to the sending agens. It 15 necessary to emsuse
that nomessage 15 1ep eatedly sent through the agent space. Note that while this
does guayantee that nomessage 15 sent foreVer, 18 does not guarantee that each
agent receiVes the message exactly once.

5 Programming Agents

We have cieated a Java mplementation, 1n which agents are rep resented by
threads, and conmunicate via shayed objects.

Agents aye dpven by a METATEM engine, which intep rets aset of pules that
descpbe the behaviour of the agens. At each cycle, the agent fist checks 1ts
Inbox for new messages, and passes them to the METATEM engine, which then,
based on thase p redicates that wee made tyue from the last state, and eventu-
alities that still need to0 be honoured, cieates a new state. If the created siate
tups out o be comsistent, the cycle 15 epeated with the newly cireated state,
otheywise, backsacking occuss, fistly within the state (by making a diffe ent
set of p redicates tyue) and 1if that fails by rolhng back states, again tying to
s olve the cont adiction by assigming diffejent $yush values top edicates within
the state.

Note that while we 1nternally use p rqp ss1810nal temp oral logic, we employ
some syntactic sugar and allow p redicates and vapables 1n ypules. However, only
rales whee all vapables aje substituted by a ground teymn “fi¢ | and thejefore
only grounded p redicates (essentially p rgp s1t10r8) can be made # rue.

An agent 13 only allowed to backipack to the p oont whee 18 1interacted with
1ts enVirormerns, by sending messages or executing side effects connected with
cepainp redicates3. This 15 due to the 1nability of agents to un-do effects on the
enVironiment.

3 Reading messages is not direct interaction, as the agents keeps track of messages
read during each cycle, and re-reads them in case of backtracking.

272 B. Hirsch et al.

As memntioned above, ceainp redicates can have side-effects. We distingwsh
between internal side effects, which ae p rovided by the system and 1nclude ac-
t1018 such as adding and jem oving agents to Content and Context, and external
ones, that corsist of Java objects and/or riles. External abilities can for exam-
ple be used to connect to databases, or interact with sersos. Table 1 gives a
shop overview of p redicates with side effects used 1n the yeminder of this paper.

Table 1. Predicates and their side effects

send(S,M) sends message M to agent-set S

doAddToContent (A)| adds Agent A to current agent Content
doAddToContext (A)| adds Agent A to current agent Context

prefer(P,Q) re-orders eventualities P and Q, s.t. P is preferred over Q
wait(i,P) sends P to itself after i milliseconds (external)

Agents aje p rogrammed using logical fopnulae 1n SNF fom*. When p rogam-
ming an agent, yiles themselves aye clustejed and tagged. The reason for this 18
twofold. F1st, 1t allows the p rogrammertost puctue hercode. Moye mp opantly
though, 1t allows for behavious (which typically comp psed of many fomnulae)
t0 be exchanged within the agent.

Wep rovide a (simple) mplementation of seveyal typical m ovements of agents,
such as moving wp and down the Content/Context hieachy, 1n a file which
agents can load. HoweVer, the p rogrammer can wate her own pules, which will
(completely) oveywpte (default) behavious with the same tag.

Figue 2 gives a sunple defimtion for addToContent/2 based on the 1mter-
nal p redicates doAddToContent/1, doAddToContext/1, which indisc gminately
connects agents (note that NEXT jep resents the “next moment 1n $1mé e~
tor). In complex agents, this willm st p robably be adapted to, for example, only
allow ceptain agents to join the agent.

addToContent: {
addToContent ($SELF,Sender)
=> NEXT doAddToContent (Sender) .
addToContent ($SELF,Sender)
=> NEXT send(Sender, addedToContent ($SELF,Sender)).
addedToContent (Sender, $Self)
=> NEXT doAddToContext (Sender). }

Fig. 2. Tagged cluster of rules implementing addToContent

4 Tt might be clear to the reader that while any temporal formula can be transformed
into SNF, the transformation will result in a set of many small formulae.

Organising Software in Active Environments 273

6 MetateM in the Museum

Using the active museum as backd rqg, we now show how the dynamic grouping
stucture and execusable logic within the system can be exploted to 1ep resent
different aspects of the scenano, and how we can design diffejent layes and
easily 1ncop orate them 1nto one system.

In ourpapicular example, we chse 10 use two distinct layes. On the one
hand, we use agents to rep reSent the physical space, that 15, the tangible stuc-
tue of the museum, corsisting of yooms, exhibits, and Visitop moving between
the diffeyent rooms; on the other hand we wish to rep resent an oigansasional
stracture of Visitoss, that will allow a Visitorto rece1vep refeences on the exhibits
available 1n a yoom.

Using the twostpuctures allows us to exploit the infoynasion they contain.
The physical styuctue can be used to keep t1ack of agent’ p sit1oms, conp ute
routes (on the ﬂy), find neaby otheragenss, find the location of sp ecific exhibits
and so on. The organisational structure allows agenmts to receive app rgp pate
suggestiors or infopnation, find and commumcate with agents with the same
inteyests, p rofile visttos and so forgh.

The fist grouping stpucture 18 depicted 1n Figuye 3. It 1¢p resemss thep hysical
lay out of the museum. In oursmmp hified example, museum M has two roons (R1
and R2), with 3 exhibits 1n each yoom (Ex1...Ex6). Each roomn also contairs a
visibor (V1 1n R1 and V2 1n R2).

Fig. 3. Physical Structure of Museum Example

A separate organsational structure (Figure 4) shows thiee interest groups, the
At Grop (AG), ColourBlind Growp (CB), and Tme Growp (TG). Visitorl
(V1) s member of both AG and CB while Visitor2 (V2) 18 only member of TG.
The function of the intejest groups 15 o p rovide Visibo with an ¢timal path
through the yoom, given the pieferences of the visitor. In our example, V1 1s
inteested 1n aki1sts, so the system suggests a cefain order o the exhibits. The
groap CB tags exhibits that p ymanly corsist of hayd to discern shades of red
and green (for the sake of aygument). It therefore recommends paicipants not
10 Visit cepgain exhibits at all.

Given just the physical styuctuse, the system should show the following be-
haviour. Up on entering a roon (joimng the content of R), a Visitorsends a mes-
sage to 15 contexs, infogming 18 that 1t 15 looking around within R. R 1n tum asks
1% content what exhibits aje available, and forwayds the arswes to the visitor.

274 B. Hirsch et al.

Fig. 4. Organisational Structure of Museum Example

The METATEM Rules needed to accomplish the above aje jather staight-
forward. Figure 5 shows the pules needed for V to “look around and remember
the exhibits 1t cansee®, as well as the pules R uses tosend app rp pate arswes.

VISITOR
exhibits: {
addedToContent (Room, $Self) => NEXT lookAround(Room).
addedToContent (Room,$Self), canSee($Self,Rooml,Exhibit)
=> NEXT seen(Exhibit).
lookAround (Room) => NEXT send(context, looking($Self,Room)).
receive(canSee($Self,Room,Exhibit))
=> NEXT canSee($Self,Room,Exhibit).
canSee ($Self,Room,Exhibit), not(seen(Exhibit))
=> NEXT canSee($Self,Room,Exhibit). }

ROOM
exhibits: {
receive(looking(Visitor,$Self))
=> NEXT send(content,whatExhibit($Self,Visitor)).
receive(exhibit (Exhibit,$Self,Visitor))
=> NEXT send(Visitor,canSee(Visitor,$Self,Exhibit)). }

Fig. 5. Physical space rules of both Visitor and Room Agents

The above yules aje enough to allow our Visitor agent to guide a visitor through
a museum gi1ven 1% has 1nfoymation about the diffeent exhibits, or jecerves
them fron the yoom. However, each and eveyy Visisor would be diyected towads
the same se®uence of exhibits.

We now add our oigamsational layer. As mentioned before, we wish to expand
the system by allowing for interest-based guidance through exhibits, p ossibly
excluding exhibits from the list. Figue 4 gives the (smmple) styucture of our
organisational layer. Note that the visitor agents V1 and V2 are the only agents
that appearin both stuctuges.

Now, forthe visitoragents to rece1vep references ab out which exhibits 1o View,
they each foywayd a canSee/2 message to their context. The interest groups

® Due to METATEM, predicates that need to be true in more than one moment in time
have to be made true explicitly.

Organising Software in Active Environments 275

INTEREST GROUP AGENT

preferences: {
START => go().
go() => NEXT prefer ($rooml,$exhibitl,$exhibit3).
go() => NEXT prefer($rooml,$exhibit3,$exhibit2).
go() => NEXT prefer($rooml,$exhibitl,$exhibit2).
go() => NEXT prefer ($room2,$exhibit6,$exhibith) .
go() => NEXT prefer ($room2,$exhibit6,$exhibit4) .
go() => NEXT prefer($room2,$exhibit5,$exhibit4) .
prefer(X,Y,Z) => NEXT prefer(X,Y,Z).}

request: {
receive(canSee(Visitor,Room,Exhibit))
=> NEXT canSee(Visitor,Room,Exhibit).
canSee(Visitor,Room,Exhibit), prefer(Room, Exhibitl, Exhibit2)
=> NEXT send(Visitor,prefer(Room, Exhibitl,Exhibit2)). }

Fig. 6. Organisational space rules of Interest Group Agent

then 1eply by sending a p reference relation over the exhibits, or alternatively
exhibits that should be excluded (Fig. 6). Exclusion 13 accomplished simply by
sending a discard/1 message. The agent rece1ving an exclusion message will go
from not having seen the exhibit $oseen, without evermaking tyue the p redicate
goLooking/1 that 1ep esents the agent’s action of looking at the exhibit (see Fig.
7). Note the message prefer/3 s followed by making prefer/2 tyue 1n the next
moment of time. prefer/2 15 an internal p redicate which e-ordes eventualities
such that the agent tpes tosatisfy the fist ajgument before the second (wheje 1t
has a choice). The visiboragent will 13 to honourthe eventuality goLooking/1 1n
the order gi1ven by the (set of) p references. Eventualities ae geneally astempted
1n the order they were created. The p pmitive prefer/2 can change that order.
Given a set of prefer/2 p redicates, the agent tyes to satisfy the corstaints
they 1ep resent. If not successful, 1t will 17 tosatisfy asubset of the p references.
Ak o note that the oyder of eventualities 15 the same across monenss 1n time, so
1% generally 18 suffictent to call prefer/2 only once. Note that several 1nteest
groups can send theirp reference relatiors, the Visibor agent will internally $ry
tomake the order as corsistent as p gssible.

In ourscenapo, the pules that acconplish this modification of eventuahty
order can be found 1n Figuyes 6 and 7. The Visitor inVokes 1nteest groups by
forwarding to them any infopnation about exhibits 1t can see. Interest groups
smply arswer by sending p reference relatiors on visible exhibits. (Execusing
send (V,prefer ($room1,X,Y)) will send all p reference p redicates thas maich
$rooml). The yules of the visitor look comphicated because the visibor, after
learning which exhibits theje are, has to jemember thee for sone tmme while
e¥uesting p references from the inteest groups. Dupng that wait, we must exsure
that the eventualities ae not honoured.

AX o note that while (1n this simp hified setting) the agent takes only one mo-
ment 1n time to actually look at the exhibits, 1% st1ll needs to “ yemembey which

276 B. Hirsch et al.

VISITOR AGENT
preference: {
receive(prefer (Room,Exhibit1,Exhibit2))
=> NEXT prefer (Exhibitl,Exhibit2).
canSee ($Self ,Room,Exhibit) => SOMETIME goLooking(Exhibit) .
canSee ($Self,Room,Exhibit) => NEXT not(goLooking(Exhibit)).
send (context,canSee($Self ,Room,Exhibit))
=> NEXT wait (2000,waitforPref (Room)).
waitforPref (Room) => NEXT startLooking(Room) .
send (context,canSee($Self,Room,Exhibit))
=> NEXT not(goLooking(Exhibit)).

not (goLooking (Exhibit)), not(startLooking(Room))
=> NEXT not(goLooking(Exhibit)).
goLooking (Exhibit) ,not (discard (Exhibit))
=> NEXT lookAt (Exhibit).
lookAt (Exhibit) => NEXT seen(Exhibit).
goLooking (Exhibit), discard(Exhibit) => NEXT seen(Exhibit). }

exclude: {
receive(discard(X)) => NEXT discard(X).
discard(X) ,not(seen(X)) => NEXT discard(X). }

exhibits: {
receive(canSee ($Self,Room,Exhibit))
=> NEXT send(context,canSee($Self,Room,Exhibit)). }

Fig. 7. Organisational space rules of Visitor Agent

exhibits 1% should exclude. The exclude pules ersure that discayded p redicates
are remembered as long as 18 necessapy.

7 Discussion of the System

In the above example, while being rathersmmple, still highhghts sevejal asp ects
of both elements, the stuctue of the agent space and the use of temp oral logic.

For one, the grap h-like st puctuse of the agent sp ace can be exploited to contain
infopmation about the system. In the above example, the room agents do not
know which exhibits they contain unsil they send a je®uest. The agent space can
be Very dynamic, and agents do not need to have complicated mechanisms to
emsure their internal rep resentation of the wodd 15 accuate.

Secondly, not only can we use the styucture insuch a way, but we can 1ep 1e-
sent different aspects of a system within the giaph, design them 1ndep endently,
and combine them at pun time. Given the pules 1n Figujes 6 and 7, we can eas-
ily add more rooms, exhibits, visitos, and 1nserest groups, without having to
e-wte or re-design the system.

Organising Software in Active Environments 277

The use of logic allows us to extend the system without having to change
anything. For example, we can define just the physical st puctue, which would
make the agent o jandomly visit the diffe ent exhibits.

By adding a sumple rule that sends re®uests forp references when a canSee
p redicate 15 rece1ved, this can be adap ted.

In Section 6 we descybed the basic scenapo. In the following subsections, we
will examine 1nm ore detail the dynamics between the agents.

7.1 Dynamic Aspects: Mobile Agents

In orderto keep the example smple, we assume that some tacking agent tacks
the visitos (in the real wodd) and sends moveTo(Visitor ,Room) messages to
the visitor agents. While we omit this 1n the curent example, visitos can easily
also be membess of this tyacking agent.

: W M 2 M 3 M

room? rem(V1)
5= e
@ RI add(V1)
mm Rl mm R2 mmm RI e R2 e RI e R2

4 M 5 M 6 M
remd(VD) whatEx? whatEx?
(e O ®
mm Rl mm R2 mm Rl mm R2 mm RI =] R2
7 M 8 M 9 M

e @2 | e @] | o) (@22

Fig. 8. Messages sent when moving to a room

Figure 8 shows the ﬂovv of messages that occur when an agent moves from
one roon to anothe® Up on receiving moveTo/2, agent V1 sends app rqp pate
addToContent and removeFromContent messages to the new and old room,
spectively. The addToContent message exchange (see Figue 2) ends with
addedToContent, which, 1in $urn, gives pse to the above descpbed 1ntechange
between room and Visitor which results 1n the visitor learning about the exhibits
available 1n the (new) room. Note thesecond rule forthe visitorin Figuye 5, which
basically ersues that the agent “forgets exhibits 1t might not have looked at
1n the room 1t just left. Also note that we can add and yemove exhibits on the
v, because the room agents always checks what exhibits ae available.

The movement of agents 15 independent of other agents being 1n the rooms,
because even though messages aje often broadcast to Content or Context, shey
generally contain the name of the jeceiving agent, so that only that agent’s rule
will fi;e. While we could have made suye that messages are only sent topagicular

5 We omit “send” and abbreviate some of the messages for readability. Also, note that
“movement” refers to virtual, rather than actual movement.

278 B. Hirsch et al.

agents, this would not have allowed us to (at a later stage) take advantage of
the ability t0 ovVerhear messages within ceytain groups.

7.2 Dynamic Aspects: Modifying Interests

We get more 1nteresting 1mteractions when looking at the opgamsasional st puc-
tue. Visitor agents can “subscpbé 1o interest groups, which 1n our example
detemmines the order in which the exhibits should be shown. In more comnplex
settings, interest groups als o detemnine or 1nﬂuence the type of infoimation that
the visitor will jeceive dupng heystay in the museum.

While ourexample 1s simp le, we can aleady distinguish sevejal sisuatiors. In
the fi;8%, the visitoris notsubscubed toany group; nexs, a Visitorcansubscube to
one ormoze 1nterest groups that give (p wsibly conﬂlctlng) p reference relatiors;
she can subscpbe to 1interest groups that suggest 1o not look at exhibits at all;
and finally a combination of the latter two.

The 1nteraction between Visitor agents and interest groups works as fol-
lows (see Figuye 9). After having received diffejent exhibits that aje available
(canSee/3), the Visitor re-broadcasts them to 185 contexs, and waits a sp ecified
tme for amswes (canSee/3 => NEXT wait/2). The pule in Figue 7,

not (goLooking(Exhibit)), not(startLooking(Room)) => NEXT

not (goLooking (Exhibit)

ersures that the eventualities contaiming goLooking/1 will not be made tyue
until the p redicate startLooking/0 18 tyue.

seen(ex1)

goLookingex2)
V1 seen(ex2)

Vi

Fig. 9. Message exchange with interest groups

If the visikoragent 15 notsubscubed toany 1nteest groups ($hat s sosay, there
are no 1nberest groups 1n the visitor agent’s contexs), 1t will ssill wait forp refer
ences. If none aresent, 1t will just work th rough 18s eventualities ina random order.

However, if the agent received one ormore prefer/3 messages, 1t re-orde
the outstanding eventualities using the internal p Iedlcateff)refer/z If they ae
not comsistent (due to different interest groups having conticting p references), 1t
will $17 to0 honour as many of the p references as p ossible, and chose randomly
between the incorsistent p references jemaining.

Organising Software in Active Environments 279

In the case of jeceiving discard/1 messages, our Visitor Just disegayds the
exhibit, even 1f 11 has a high p reference. It should be clear though that we
could easily add some pules to, for example, give discayded exhibits a Veyy low
p reference.

8 Conclusions

In this paper, we have utilised a stuctued muli-agent p rog ramming language,
and have shown how the styuctue can be explated to create conplex systems
that are (a) relatively easy to specify, due to the p ossibiliby of desigming dif-
ferent layes independently of each other, (b) dynamic, and therefore suisable
forsystems whee many different agents inteact 1n unforeseeable ways, and (c)
p otentially vepfiable, due to the logical basis of the system. The key behaviouss
of individual agents aje p rovided through vapeties of execusable temp oral logic,
while the over-arching group structuse allows us $o 1ep 1esent a jange of physical
and Vigual ogamsatiors. This app roach p rovides a p owe ful, ﬂex1b]e7 yvet logic-
based, route tothe design, modelling and develgpment of s oftware for ubi®utous
comp uting app licatiors.

Futue work involves develgping more complexscenapios, and comp aping with
other app roaches to the theory of team bwlding [20] and other (non logic-based)
multi-agent p rog r@mming systems [7,17].

References

1. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An
Introduction. Formal Aspects of Computing, 7(5):533-549, 1995.

2. R. Bordini, W. Visser, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
multi-agent programs with CASP. In Proceedings of the Fifteenth Conference on
Computer-Aided Verification (CAV-2003), Boulder, CO, 8-12 July, 2003.

3. M. E. Bratman. Intentions, Plans, and Practical Reason. Havard University Press,
Cambridge, MA, 1987.

4. P. Busetta, A. Dond, and M. Nori. Channeled multicast for group communications.
In Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1280-1287. ACM Press, 2002.

5. P. Busetta, T. Kuflik, M. Merzi, and S. Rossi. Service delivery in smart environ-
ments by implicit organizations. In Proceedings of the First Annual International
Conference on Mobile and Ubiquitous Systems (MobiQuitous 2004), pages 356-363,
Boston, MA, USA, 22-26 August 2004. IEEE Computer Society Press.

6. P. Busetta, M. Merzi, S. Rossi, and F. Legras. Intra-Role Coordination Using
Group Communication: A Preliminary Report. In Proceedings of International
Workshop on Agent Communication Languages, ACL2003 (in conjunction with
AAMAS 20083), volume LNAT 2922, pages 231-253. Springer, July 2003.

7. J. Ferber and O. Gutknecht. Aalaadin: a meta-model for the analysis and design of
organisations in multi-agent systems. Research Report R.R.LIRMM 97189, LIRM,
Université Montpelier, France, December 1997.

280

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

B. Hirsch et al.

M. Fisher. Concurrent METATEM — A Language for Modeling Reactive Sys-
tems. In Parallel Architectures and Languages, Europe (PARLE), Munich, Ger-
many, June 1993. (Published in Lecture Notes in Computer Science, volume 694,
Springer-Verlag).

M. Fisher. An Introduction to Executable Temporal Logics. Knowledge Engineer-
ing Review, 11(1):43-56, March 1996.

M. Fisher. A normal form for temporal logic and its application in theorem-proving
and execution. Journal of Logic and Computation, 7(4):429 — 456, August 1997.
M. Fisher and C. Ghidini. Programming Resource-Bounded Deliberative Agents.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI).
Morgan Kaufmann, 1999.

M. Fisher and C. Ghidini. The ABC of rational agent modelling. In Proceedings
of the first international joint conference on autonomous agents and multiagent
systems (AAMAS’02), Bologna, Italy, July 2002.

M. Fisher and T. Kakoudakis. Flexible agent grouping in executable temporal logic.
In Proceedings of the 12th International Symposium of Intensional Programming
Languages, 1999.

R. Goldblatt. Logics of Time and Computation, volume 7 of CLSI Lecture Notes.
CLSI, Stanford, CA, 2nd edition, 1992.

B. Hirsch, M. Fisher, and C. Ghidini. Organising logic-based agents. In M.G.
Hinchey, J.L. Rash, W.F. Truszkowski, C. Rouff, and D. Gordon-Spears, edi-
tors, Formal Approaches to Agent-Based Systems. Second International Workshop,
FAABS 2002, volume 2699 of LNAI pages 15-27. Springer, 2003.

N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1:275-306, 1998.
Agent Oriented Software Ltd. The JACK programming language, 2000.
http://agent-software.com.au.

J. McCarthy. Active environments: Sensing and responding to groups of people.
Personal and Ubiquitous Computing, 5(1), 2001.

O. Stock and M. Zancanaro. Intelligent Interactive Information Presentation for
Cultural Tourism. In Proceedings of the International CLASS Workshop on Natural
Intelligent and Effective Interaction in Multimodal Dialogue Systems, Copenhagen,
Denmark, 28-29 June 2002.

D. Pynadath and M. Tambe. An automated teamwork infrastructure for heteroge-
neous software agents and humans. Journal of Autonomous Agents and Multiagent
Systems, 2002.

Author Index

Alferes, José Julio 52 Homola, Martin 78
Arkoudas, Konstantine 111 Hulstijn, Joris 144
Baldoni, Matteo 196 Inoue, Katsumi 161

Banti, Federico 52
Barber, K. Suzanne 249
Baroglio, Cristina 196
Bentahar, Jamal 178
Bringsjord, Selmer 111
Brogi, Antonio 52
Busetta, Paolo 265

Kakas, Antonis C. 96
Lomuscio, Alessio 1

Mancarella, Paolo 96, 230
Martelli, Alberto 196
Meyer, John-Jules Ch. 16, 33, 178

Moulin, Bernard 178
Casali, Ana 126

Chaib-draa, Brahim 178 Patti, Viviana 196
Dastani, Mehdi 144 Sadri, Fariba 96, 230
de Boer, Frank S. 16 Sakama, Chiaki 161
Dignum, Frank 33 Satoh, Ken 213
Schifanella, Claudio 196
Fisher, Michael 265 Sierra, Carles 126

Stathis, Kostas 96

Ghidini, Chiara 265
Godo, Lluis 126
Grossi, Davide 33

Terreni, Giacomo 230
Toni, Francesca 96, 230

van der Torre, Leendert 144
Han, David C. 249 van Riemsdijk, M. Birna 16
Herzig, Andreas 144
Hirsch, Benjamin 265 Wozna, Bozena 1

	Frontmatter
	Foundations
	A Logic for Knowledge, Correctness, and Real Time
	Dynamic Logic for Plan Revision in Intelligent Agents
	Contextual Taxonomies
	From Logic Programs Updates to Action Description Updates
	Dynamic Logic Programming: Various Semantics Are Equal on Acyclic Programs

	Architectures
	Declarative Agent Control
	Metareasoning for Multi-agent Epistemic Logics
	Graded BDI Models for Agent Architectures

	Interaction
	Inferring Trust
	Coordination Between Logical Agents
	A Computational Model for Conversation Policies for Agent Communication
	Verifying Protocol Conformance for Logic-Based Communicating Agents

	Planning and Applications
	An Application of Global Abduction to an Information Agent Which Modifies a Plan Upon Failure -- Preliminary Report
	Planning Partially for Situated Agents
	Desire-Space Analysis and Action Selection for Multiple Dynamic Goals
	Organising Software in Active Environments

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

